The general form of objective function  for production targets optimisation is given by:



G = \sum_{y=1}^{N_y} \frac{AG_y}{(1+r)^y} \rightarrow \rm max



AG_y = \sum_t G_t = \sum_t G_t^{+} - G_t^{-}





G_t^{+} =  \sum_{k=1}^{N^{\uparrow}_P} \left[ R_O(t) \cdot q^{\uparrow}_{O, k}(t) + R_G(t) \cdot  q^{\uparrow}_{G, k}(t) \right] 



G_t^{-} = 
 \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{L,k} \cdot q^{\uparrow}_{L, k}(t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{O,k} \cdot q^{\uparrow}_{O, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{G,k} \cdot q^{\uparrow}_{G, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{W,k} \cdot q^{\uparrow}_{W, k}(t)
+\sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}(t)
+\sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
+ C_{WS} \cdot q_{WS}(t)
+ C_{GS} \cdot q_{GS}(t)




q_{WS}(t) = \sum_{i=1}^{N^{\downarrow}_W}  q^{\downarrow}_{W, i}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, k}(t) 



C_{WS}(t)= \begin{cases} 
C^{\uparrow}_{WS}(t), & \mbox{if } q_{WS}(t)>0 
\\ 
C^{\downarrow}_{WS}(t), & \mbox{if } q_{WS}(t)<0 
\end{cases}



q_{GS}(t) = \sum_{j=1}^{N^{\downarrow}_G}  q^{\downarrow}_{G, j}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{G, k}(t)



C_{GS}(t)= \begin{cases} 
C^{\uparrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 
\\ 
C^{\downarrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 
\end{cases}




q^{\uparrow}_{LMIN, p} \leq q^{\uparrow}_{L, p}(t) \leq  q^{\uparrow}_{LMAX, p}



q^{\downarrow}_{WMIN, i} \leq q^{\downarrow}_{W, i}(t) \leq  q^{\downarrow}_{WMAX, i}



q^{\downarrow}_{GMIN, j} \leq q^{\downarrow}_{G, j}(t) \leq q^{\downarrow}_{GMAX, j}



where

yearsassessment period

daysday within a given year

discount rate

volume/day

oil production rate for -th producer

cash/volume

cost of produced oil treatment and transportation from -th wellhead to CMS

cash/volumeoil selling price

volume/day

gas production rate for -th producer

cash/volume

cost of produced gas treatment and transportation from -th wellhead to CMS

cash/volumegas selling price

volume/day

water production rate for -th producer

cash/volume

cost of produced water treatment and transportation from -th wellhead to CMS

counts

number of producers at 

volume/day

liquid production rate for -th producer

cash/volume

cost of fluid lift from reservoir to the -th wellhead, cash/volume




volume/day

water supply/disposal rate

cash/volumecost of water supply

cash/volumecost of water disposal

volume/daygas supply/disposal rate

cash/volumecost of gas supply

cash/volumecost of gas disposal

volume/day

water injection rate for -th water injector

cash/volume

cost of water injection, including treatment, transportation and pumping into -th well

counts

number of water injectors at 

volume/day

gas injection rate for -th gas injector

cash/volume

cost of gas injection, including purchase, treatment, transportation and pumping into -th well


counts


number of gas injectors at 


The objective function   can be rewritten in terms of Surface flowrates :



G_t = \sum_{p=1}^{N^{\uparrow}_P} C^{\uparrow}_{OGW}(t)  \cdot q^{\uparrow}_{L, p}(t)
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,i} \cdot q^{\downarrow}_{W, i}(t) 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
- C^{\uparrow}_{WS,k} \cdot q^{\uparrow}_{WS}(t)
-C^{\uparrow}_{GS} \cdot q^{\uparrow}_{GS}(t)




C^{\uparrow}_{OGW}(t) = \left[  (R_O(t) -  C^{\uparrow}_{O,p}) + (R_G(t) - C^{\uparrow}_{G,p}) \cdot  Y_{g,p}(t) \right]  \cdot (1- Y_{w,p}(t)) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p}(t) 



where

Watercut in -th well

Gas-Oil Ratio in -th well




The objective function   can be further rewritten in terms of Sandface flowrates :

G = \sum_{k=1}^{N^{\uparrow}_P} G^{\uparrow}_{t,k} \cdot q^{\uparrow}_{t, k}
- \sum_{i=1}^{N^{\downarrow}_W} G^{\downarrow}_{w,i}  \cdot 
q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow}_G} G^{\downarrow}_{g,j}  \cdot q^{\downarrow}_{g, j} - C^{\uparrow}_{WS,k} \cdot q^{\uparrow}_{WS}(t) \rightarrow \rm max


G^{\uparrow}_{t,k} = \frac{\left[  (R_O -  C^{\uparrow}_{O,k}) + (R_G - C^{\uparrow}_{G,k}) \cdot  Y_{g,k} \right]  \cdot (1- Y_{w,k}) 
- C^{\uparrow}_{L,k} - C^{\uparrow}_{W,k} \cdot Y_{w,k} }
{B_{w,k} Y_{w,k} + \left[ (B_{o,k} - R_{s,k} B_{g,k}) + (B_{g,k} - R_{v,k} B_{o,k}) \, Y_{g,k} \right] \cdot (1-Y_{w,k})}


G^{\downarrow}_{w,i} = B_{w,i} C^{\downarrow}_{W,i} 


G^{\downarrow}_{g,i} = B_{g,i} \cdot C^{\downarrow}_{G,i}


where

Water FVF for -th well

BHPin -th well

Oil FVF for -th well

 Solution GOR in -th well

Gas FVF for -th well

 Vaporized Oil Ratio in -th well






G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
(R_O -  C^{\uparrow}_{O,p}) \cdot q^{\uparrow}_{O, p} + (R_G - C^{\uparrow}_{G,p}) \cdot  q^{\uparrow}_{G, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot q^{\uparrow}_{W, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot q^{\uparrow}_{O, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot Y_{w,p} \cdot q^{\uparrow}_{L, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot (1- Y_{w,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} 
\right]  \cdot q^{\uparrow}_{L, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}

Translating  and  to Sandface flowrates  and  with formation volume factor and substituting liquid production rate  from  one arrives to:

G(t) = \sum_{p=1}^{N^{\uparrow}_P}  \frac{\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot (1- Y_{w,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} }
{B_w Y_{w,p} + \left[ (B_o - R_s B_g) + (B_g - R_v B_o) \, Y_{g,p} \right] \cdot (1-Y_{w,p})}
 
 \cdot q^{\uparrow}_{t, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot B_w \cdot q^{\downarrow}_{w, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot B_g \cdot q^{\downarrow}_{g, j}

which is equivalent to .





Depending on Lift mechanism the rates in equation  may be set directly or calculated from THP and formation pressure  (which is a usual case in injection wells):

q^{\uparrow}_{t, k} = J_{t,k} \cdot ( p_{e,k} - p_{wf,k} )


G^{\downarrow}_{w,i} = J_{w,i} \cdot ( p_{wf,i} - p_{e,i} )


G^{\downarrow}_{g,i} = J_{g,i} \cdot ( p_{wf,i} - p_{e,i} )


Producing wells may spontaneously vary between Constant rate production: qL = const and Constant pressure production: pwf = const (see Constant rate production: qL = const for alternation details).


See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology 

Constant rate production: qL = const ] [ Constant pressure production: pwf = const ]