The general form of objective function  for production targets optimisation is given by:


G = \sum_{y=1}^{N_y} \frac{AG_y}{(1+r)^y} \rightarrow \rm max



AG_y = \sum_{t=1+y_t}^{365+y_t} G_t = \sum_{t=1+y_t}^{365+y_t} 
\left( G_t^{+} - G_t^{-} \right)





G_t^{+} =  \sum_{k=1}^{N^{\uparrow}_P} \left[ R_O(t) \cdot q^{\uparrow}_{O, k}(t) + R_G(t) \cdot  q^{\uparrow}_{G, k}(t) \right] 



G_t^{-} = 
 \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{L,k} \cdot q^{\uparrow}_{L, k}(t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{O,k} \cdot q^{\uparrow}_{O, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{G,k} \cdot q^{\uparrow}_{G, k} (t)
+\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{W,k} \cdot q^{\uparrow}_{W, k}(t)
+\sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}(t)
+\sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
+ C_{WS} \cdot q_{WS}(t)
+ C_{GS} \cdot q_{GS}(t)




q_{WS}(t) = \sum_{i=1}^{N^{\downarrow}_W}  q^{\downarrow}_{W, i}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, k}(t) 



C_{WS}(t)= \begin{cases} 
C^{\uparrow}_{WS}(t), & \mbox{if } q_{WS}(t)>0 
\\ 
C^{\downarrow}_{WS}(t), & \mbox{if } q_{WS}(t)<0 
\end{cases}



q_{GS}(t) = \sum_{j=1}^{N^{\downarrow}_G}  q^{\downarrow}_{G, j}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{G, k}(t)



C_{GS}(t)= \begin{cases} 
C^{\uparrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 
\\ 
C^{\downarrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 
\end{cases}




where

yearsassessment period

days

running time in the form of the number of days past the start of production 

years

number of whole years past the start of production by the current moment 

discount rate





volume/day

oil production rate for -th producer

cash/volume

cost of produced oil treatment and transportation from -th wellhead to CTM

cash/volumeoil selling price

volume/day

gas production rate for -th producer

cash/volume

cost of produced gas treatment and transportation from -th wellhead to CTM

cash/volumegas selling price

volume/day

water production rate for -th producer

cash/volume

cost of produced water treatment and transportation from -th wellhead to CTM

counts

number of producers at 

volume/day

liquid production rate for -th producer

cash/volume

cost of fluid lift from reservoir to the -th wellhead, cash/volume




volume/day

water supply/disposal rate

cash/volumecost of water supply

cash/volumecost of water disposal

volume/daygas supply/disposal rate

cash/volumecost of gas supply

cash/volumecost of gas disposal

volume/day

water injection rate for -th water injector

cash/volume

cost of water injection, including treatment, transportation and pumping into -th well

counts

number of water injectors at 

volume/day

gas injection rate for -th gas injector

cash/volume

cost of gas injection, including purchase, treatment, transportation and pumping into -th well


counts


number of gas injectors at 


The objective function   can be rewritten in terms of Surface flowrates  and usual subject to engineering restrictions:


G_t = \sum_{p=1}^{N^{\uparrow}_P} C^{\uparrow}_{OGW}(t)  \cdot q^{\uparrow}_{L, p}(t)
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,i} \cdot q^{\downarrow}_{W, i}(t) 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t)
- C_{WS} \cdot q_{WS}(t)
- C_{GS} \cdot q_{GS}(t)



C^{\uparrow}_{OGW}(t) = \left[  (R_O(t) -  C^{\uparrow}_{O,p}) + (R_G(t) - C^{\uparrow}_{G,p}) \cdot  Y_{G,p}(t) \right]  \cdot (1- Y_{W,p}(t)) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p}(t) 



0 \leq q^{\uparrow}_{L, p}(t) \leq  q^{\uparrow}_{LMAX, p}(t)



0 \leq q^{\downarrow}_{W, i}(t) \leq  q^{\downarrow}_{WMAX, i}(t)



0 \leq q^{\downarrow}_{G, j}(t) \leq q^{\downarrow}_{GMAX, j}(t)



\sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{L, p}(t) \leq q^{\uparrow}_{LMAX}



q^{\downarrow}_{WMIN}(t) \leq 
\sum_{i=1}^{N^{\downarrow}_W} q^{\downarrow}_{W, i}(t) 
\leq q^{\downarrow}_{WMAX}



\sum_{j=1}^{N^{\downarrow}_G} q^{\downarrow}_{G, j}(t)
\leq q^{\downarrow}_{GMAX}




q^{\downarrow}_{WMIN}(t) = \sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, p}(t) 




where

Watercut in -th well

Gas-Oil Ratio in -th well





The objective function   can be further rewritten in terms of Sandface flowrates :

G = \sum_{k=1}^{N^{\uparrow}_P} G^{\uparrow}_{t,k} \cdot q^{\uparrow}_{t, k}
- \sum_{i=1}^{N^{\downarrow}_W} G^{\downarrow}_{w,i}  \cdot 
q^{\downarrow}_{w, i}
- \sum_{j=1}^{N^{\downarrow}_G} G^{\downarrow}_{g,j}  \cdot q^{\downarrow}_{g, j} - 
- C_{WS} \cdot q_{WS}(t)
- C_{GS} \cdot q_{GS}(t)
 \rightarrow \rm max


G^{\uparrow}_{t,k} = \frac{\left[  (R_O -  C^{\uparrow}_{O,k}) + (R_G - C^{\uparrow}_{G,k}) \cdot  Y_{G,k} \right]  \cdot (1- Y_{W,k}) 
- C^{\uparrow}_{L,k} - C^{\uparrow}_{W,k} \cdot Y_{W,k} }
{B_{w,k} Y_{W,k} + \left[ (B_{o,k} - R_{s,k} B_{g,k}) + (B_{g,k} - R_{v,k} B_{o,k}) \, Y_{G,k} \right] \cdot (1-Y_{w,k})}


G^{\downarrow}_{w,i} = B_{w,i} C^{\downarrow}_{W,i} 


G^{\downarrow}_{g,i} = B_{g,i} \cdot C^{\downarrow}_{G,i}


where

Water FVF for -th well

BHPin -th well

Oil FVF for -th well

 Solution GOR in -th well

Gas FVF for -th well

 Vaporized Oil Ratio in -th well






G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
(R_O -  C^{\uparrow}_{O,p}) \cdot q^{\uparrow}_{O, p} + (R_G - C^{\uparrow}_{G,p}) \cdot  q^{\uparrow}_{G, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot q^{\uparrow}_{W, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{G,p} \right]  \cdot q^{\uparrow}_{O, p} 
- C^{\uparrow}_{L,p}  - C^{\uparrow}_{W,p} \cdot Y_{W,p} \cdot q^{\uparrow}_{L, p}
\right]  
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}


G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ 
\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{G,p} \right]  \cdot (1- Y_{W,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} 
\right]  \cdot q^{\uparrow}_{L, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}

Translating  and  to Sandface flowrates  and  with formation volume factor and substituting liquid production rate  from  one arrives to:

G(t) = \sum_{p=1}^{N^{\uparrow}_P}  \frac{\left[  (R_O -  C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot  Y_{g,p} \right]  \cdot (1- Y_{w,p}) 
- C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p} }
{B_w Y_{W,p} + \left[ (B_o - R_s B_g) + (B_g - R_v B_o) \, Y_{G,p} \right] \cdot (1-Y_{W,p})}
 
 \cdot q^{\uparrow}_{t, p}
- \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot B_w \cdot q^{\downarrow}_{w, i} 
- \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot B_g \cdot q^{\downarrow}_{g, j}

which is equivalent to .






Depending on Lift mechanism the rates in equation  may be set directly or calculated from THP and formation pressure  (which is a usual case in injection wells):

q^{\uparrow}_{t, k} = J_{t,k} \cdot ( p_{e,k} - p_{wf,k} )


q^{\downarrow}_{w,i} = J_{w,i} \cdot ( p_{wf,i} - p_{e,i} )


q^{\downarrow}_{g,i} = J_{g,i} \cdot ( p_{wf,i} - p_{e,i} )


Producing wells may spontaneously vary between Constant rate production: qL = const and Constant pressure production: pwf = const (see Constant rate production: qL = const for alternation details).



See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology 

Constant rate production: qL = const ] [ Constant pressure production: pwf = const ]