Motivation




Inputs & Outputs



InputsOutputs

Cumulative subsurface water influx from aquifer

initial formation pressure

Subsurface water flowrate from aquifer

water influx constant

aquifer diffusivity

net pay area


Physical Model



Radial Composite Reservoir

Transient flow
Computational approximation to van Everdingen-Hurst (VEH)









Fig. 1. Carter-Tracy aquifer drive schematic


Mathematical Model


\frac{d Q^{\downarrow}_{AQ}}{dt_D} = \frac{ B \cdot (p_i - p(t_D)) - Q^{\downarrow}_{AQ} \cdot p'_D(t_D)}{p_D(t_D) - t_D \cdot p'_D(t_D)}
p_D= \frac{370.529 \, \sqrt{t_D} +137.528 \, t_D + 5.69549 \, t_D^{1.5}}
{328.834 +265.488 \, \sqrt{t_D} + 45.2157 \, t_D +  t_D^{1.5} }
q^{\downarrow}_{AQ}(t)=\frac{d Q^{\downarrow}_{AQ}}{dt} 



p'_D= \frac
{716.441 + 46.7984 \, \sqrt{t_D} + 270.038 \, t_D + 71.0098 \, t_D^{1.5} }
{ 1296.86 \, \sqrt{t_D} + 1204.73 \, t_D + 618.618 \, t_D^{1.5} + 538.072 \, t_D^2 + 142.41 \, t_D^{2.5} }




t_D= \frac{\pi \, \chi \, t}{A_e}

Equation is not a solution of diffusion equation but an approximation of VEH model which does not involve convolution integral.

Computational Model


Q^{\downarrow}_{AQ}(t_{D,n}) = Q^{\downarrow}_{AQ}(t_{D, \, n-1}) + (t_{D,n}-t_{D,\, n-1}) \cdot 

 \frac{ B \cdot (p_i - p(t_{D,n})) - Q^{\downarrow}_{AQ}(t_{D, \, n-1}) \cdot p'_D(t_{D,n})}{p_D(t_{D,n}) - t_{D,\, n-1} \cdot p'_D(t_{D, n})}


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

Reference


1. Carter, R.D. and Tracy, G.W. 1960. An Improved Method for Calculating Water Influx. Trans., AIME 219: 415.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)