k = 1014.24 \cdot FZI^2 \cdot \frac{\phi^3}{( 1 - \phi )^2}

where

effective porosity

Flow Zone Indicator



with Flow Zone Indicator having a complex dependance on porosity and shaliness:

FZI(V_{sh},\phi_r) = {\rm w}_1(V_{sh}) \, \phi_r^{m_1} + {\rm w}_2(V_{sh}) \, \phi_r^{m_2}

for each lithofacies individually.


Usually, the first component   dictates Flow Zone Indicator values at low porosities while second component  takes over at high porosities.


This allows to cover a wider range of porosity variations comparing to single-component Cozeny-Karman permeability @model.


The dependance of weight coefficients on shaliness can be often approximated as:

{\rm w}_1(V_{sh})  = {\rm w}_{01} \, (1- V_{sh}/V_{sh1})^{g_1}


{\rm w}_2(V_{sh}) = {\rm w}_{02} \, (1- V_{sh}/V_{sh2})^{g_2}

where

the highest values of weights for shale-free rock matrix

critical values of shaliness at which the corresponding component of Flow Zone Indicator vanishes

cementing factors, when low they diminish dependance on shaliness


This model is very flexible and covers a wide range of practical cases.


When  and  are small () the Flow Zone Indicator becomes independent on porosity and shaliness and the model degrades to conventional Cozeny-Karman permeability @model with .


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Petrophysics / Absolute permeability / Absolute permeability @model