The general form of non-linear single-phase pressure diffusion model is given by: 

\beta({\bf r},p) \, \frac{\partial p}{\partial t} = \nabla \Big( M({\bf r},p, \nabla p) \cdot \nabla p \Big)

with non-linear dependence of fluid mobility  on reservoir pressure  and spatial pressure gradient :

M = k_a({\bf r}) \, M_r(p, \nabla p) 

and non-linear dependence of compressivity  and compressibility  on reservoir pressure  :

\beta = c_t({\bf r},p) \cdot \phi({\bf r},p)


c_t({\bf r},p)  = c_r({\bf r},p) + \sum_\alpha s_\alpha({\bf r}) c_\alpha(p) 

where

Fluid mobility as function of reservoir pressure  and spatial pressure gradient 

Relative mobility as function of reservoir pressure  and spatial pressure gradient 

Total compressibility as function of reservoir pressure  and location

Rock compressibility as function of reservoir pressure  and location

-phase compressibility as function of reservoir pressure  for

Effective porosity as function of reservoir pressure  and location

Some function of reservoir pressure  and spatial pressure gradient  with the following asymptotic behaviour:


The same account for non-linearity can be applied for non-linear multi-phase pressure diffusion when Pressure Diffusion Model Validity Scope is met and multi-phase pressure dynamics can be modeled as effective single-phase pressure dynamics.


Below is the list of popular physical phenomena and their mathematical models which can be covered by  model.


Compressible fluids


Pressure diffusion equation is going to be:

c_t(p) \, \phi({\bf r})  \, \frac{\partial p}{\partial t} = \nabla (M(p)  \nabla p )

where


c_t({\bf r},p)  = c_r({\bf r}) + \sum_\alpha s_\alpha({\bf r}) c_\alpha(p) 


Total compressibility as function of reservoir pressure  and location

Rock compressibility as function of location

-phase compressibility as function of reservoir pressure  for

Formation permeability as function of location

See also


Pressure diffusion / Pressure Diffusion @model /  Single-phase pressure diffusion model  / Non-linear single-phase pressure diffusion @model