Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »


Arrhenius


0 variables

(1) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2


Lederer-Roegiers


1 variable

(2) \ln {\mu}_{12} = \frac{x_1}{x_1 + \alpha \, x_2} \cdot \ln {\mu}_1 + \frac{\alpha \, x_2}{x_1 + \alpha \,x_2} \cdot \ln {\mu}_2


1 variable

(3) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2


Oswal-Desai


3 variables

(4) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2 + K_1 \, x_1 \, x_2 \, (x_1 - x_2) + K_2 \, x_1 \, x_2 \, (x_1 - x_2)^2
Kendall-Monroe0 variables
(5) {\nu}_{12}^{1/3} = x_1 \cdot \nu_1^{1/3} + x_2 \cdot \nu_2^{1/3}


The Lederer-Roegiers equation is reported to be the most accurate among single-variable models.

See also


Physics / Fluid Dynamics / Mixing Rules

References


Boris Zhmud, Viscosity Blending Equations, Lube-tech, 121, 2014






  • No labels