Page tree


Arrhenius


0 variables

(1) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2


Lederer-Roegiers


1 variable

(2) \ln {\mu}_{12} = \frac{x_1}{x_1 + \alpha \, x_2} \cdot \ln {\mu}_1 + \frac{\alpha \, x_2}{x_1 + \alpha \,x_2} \cdot \ln {\mu}_2


1 variable

(3) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2


Oswal-Desai


3 variables

(4) \ln {\mu}_{12} = x_1 \cdot \ln {\mu}_1 + x_2 \cdot \ln {\mu}_2 + \epsilon \, x_1 \, x_2 + K_1 \, x_1 \, x_2 \, (x_1 - x_2) + K_2 \, x_1 \, x_2 \, (x_1 - x_2)^2


Kendall-Monroe


0 variables

(5) {\nu}_{12}} = \left[ x_1 \cdot \nu_1^{1/3} + x_2 \cdot \nu_2^{1/3} \right]^3


Refutas


0 variables

(6) {\nu}_{12} = \exp \left[ \, \exp \left(\frac{A_{12}-10.975}{14.534} \right) - 0.8 \, \right], \ \ A_{12} = y_1 \, A_1 + y_2 \, A_2, \ \ A_i = 14.534 \, \ln \left[ \, \ln \left( \nu_i + 0.8 \right) \, \right] + 10.975, \ \ i = \{ 1,2\}


The Lederer-Roegiers equation is reported to be the most accurate among single-variable models.

See also


Physics / Fluid Dynamics / Mixing Rules

References


Boris Zhmud, Viscosity Blending Equations, Lube-tech, 121, 2014






  • No labels