Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 24 Next »


Consider the Cartesian coordinates  in 3D space:  ℝ^3 \Big |_{ \{x, y, z \} } and its infinitesimal volumetric element:  \delta \Omega = \{ (x, x+\delta), (y, y+\delta y), (z, z+\delta z) \} \in ℝ^3  with volume  \delta V = \delta x \, \delta y \, \delta z bounded by six faces:  \{ (\delta \Sigma_x, \, \delta \Sigma_{x+\delta x}), \, (\delta \Sigma_y, \, \delta \Sigma_{y+\delta y}), \, (\delta \Sigma_z, \, \delta \Sigma_{z+\delta z}) \} which have the same area along corresponding axis:

(1) \delta A(\delta \Sigma_x) = \delta A(\Sigma_{x+\delta x }) = \delta A_{yz} = \delta y \cdot \delta z
(2) \delta A(\delta \Sigma_y) = \delta A(\Sigma_{y+\delta y }) = \delta A_{xz} = \delta x \cdot \delta z
(3) \delta A(\delta \Sigma_z) = \delta A(\Sigma_{z+\delta z }) = \delta A_{xy} = \delta x \cdot \delta y

Consider the volumetric element  \delta \Omega is filled with porous media with porosity  \phi(x,y,z) saturated by fluid with density  \rho(x,y,z).

The pore volume is going to be  \delta V_{\phi} = \phi \cdot \delta V and the fluid mass contained in this volume is  \delta m = \rho \cdot \delta V_{\phi} = \rho \cdot \phi \cdot \delta V.

The mass flowrate  through any face   \delta \Sigma with area  \delta A is defined as:

(4) \frac{dm}{dt} \Big|_{\delta \Sigma} = {\bf j} \, {\bf \delta A}

where

{\bf \delta A} = \delta A \cdot {\bf n}

vector area 

{\bf n}

normal vector to  elementary area   \delta A

{\bf j} = \rho \cdot {\bf u}

mass flux vector 

{\bf u}

fluid flow velocity


The total mass balance of the volumetric element  \delta \Omega honours the mass conservation:

(5) \frac{dm}{dt} \Big|_{\delta \Omega} = \sum_{\alpha} j_{\alpha}A_{\alpha} + \delta \dot m_q
(6) \frac{dm}{dt} \Big|_{\delta \Omega} = j_x|_{x}\cdot \delta A_{yz} - j_x|_{x+\delta x}\cdot \delta A_{yz} +j_y|_{y}\cdot \delta A_{xz} - j_y|_{y+\delta y}\cdot \delta A_{xz} + j_z|_{z}\cdot \delta A_{xy} - j_z|_{z+\delta z}\cdot \delta A_{xy}  + \delta \dot m_q

where

\delta \dot m_q

the rate of the mass variation which happens inside the volumetric element  \delta \Omega   


Dividing the  (5) by the volume  \delta V:

(7) \frac{dm}{dt \, \delta V} \Big|_{\delta \Omega} = \frac {\partial (\rho \, \phi)}{\partial t} = \frac{j_x|_x - j_x|_{x+\delta x}}{\delta x} + \frac{j_y|_y - j_y|_{y+\delta y}}{\delta y} + \frac{j_z|_z - j_z|_{z+\delta z}}{\delta z} + \frac{\delta \dot m_q}{\delta V}

or in differential form:

(8) \frac{\partial (\rho \phi)}{\partial t} = - \nabla \, {\bf j} + \frac{\delta \dot m_q}{\delta V}
(9) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, {\bf j} = \frac{\delta \dot m_q}{\delta V}

The mass rate generated/consumed by a finite number of well-reservoir contacts can be expressed as:

(10) \frac{\delta \dot m_q}{\delta V} = \sum_k \rho_k \cdot q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

where

q_k(t)

volumetric flowrate of the source/stock at the reservoir point  {\bf r}_k

\rho_k (t) = \rho(p(t, {\rm r}_k))

fluid density at the reservoir point  {\bf r}_k


The next step is to re-right  (10) in equivalent form:

(11) \frac{\delta \dot m_q}{\delta V} = \sum_k \rho_k \cdot q_k(t) \cdot \delta({\bf r}-{\bf r}_k) = \rho(t,{\rm r}) \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

which turns  (9) into:

(12) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, {\bf j} = \rho \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

Substituting the mass flux   {\bf j} = \rho \cdot {\bf u}  into  (12):

(13) \frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = \rho \cdot \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)

Take into account that:

(14) \frac{\partial (\rho \phi)}{\partial t} = \rho \cdot \frac{\partial \phi}{\partial t} + \frac{\partial \rho}{\partial t} \cdot \phi = \rho \cdot \phi \left( \frac{1}{\rho} \cdot \frac{\partial \phi}{\partial t} + \frac{1}{\phi} \cdot \frac{\partial \rho}{\partial t} \right) = \rho \cdot \phi \cdot ( c + c_r) = \rho \cdot \phi \cdot c_t

and

(15) \nabla \, ( \rho \, {\bf u}) = \rho \cdot \nabla \,{\bf u} + \nabla \, \rho \cdot {\bf u} = \rho \cdot \nabla \,{\bf u} + \rho \cdot c \cdot {\bf u} \, \nabla \, p

where

\displaystyle c_r = \frac{1}{\phi} \, \frac{\partial \phi}{\partial p}

reservoir pore compressibility

\displaystyle c = \frac{1}{\rho} \, \frac{\partial \rho}{\partial p}

fluid compressibility

c_t = c_r + c

total compressibility 


Substituting equations  (14) and  (15) in  (13) and cancelling the fluid density  \rho one arrives to:

(16) \phi \, c_t \, \frac{\partial p}{\partial t} + \nabla \, {\bf u} + c \cdot {\bf u} \, \nabla \, p = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels