Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

(1) \left( \frac{dp}{dl} \right)_f = - \frac{ j_m^2}{2 d} \cdot \frac{f}{\rho}


The  friction losses depend on density and friction factor distribution along the pipe.

The accurate calculations require solving of a self-consistent equation of Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model.

There are few popular practical approximations based on assumption of constant friction factor and  linear density-pressure equation of state.


Approximations



(2) \Delta p(L)=- \frac{j_m^2}{\rho_0} \cdot \frac{f_0 \, L}{2 \, d }

f(l)= f_0 = \rm const

\rho(l)=\rho_0= \rm const

(3) \Delta p (L) =- \frac{\rho_0}{c^*} \cdot \left[ 1 - \sqrt{ 1 - j_m^2 \cdot \frac{c^* \rho^*}{\rho_0^2} \cdot \frac{f_0 L}{d}} \right]

f(l)= f_0 = \rm const

\rho(l)=\rho^* \cdot (1 + c^* \, p)

c^* \, p \ll 1

(4) \Delta p (L) =- p_0 \cdot \left[ 1- \sqrt{ 1 - \frac{j_m^2}{\rho_0 \, p_0} \cdot \frac{f_o L}{d} } \right]

f(l)= f_0 = \rm const

\displaystyle \rho(l)= \frac{\rho_0}{p_0} \cdot p


(5) \Delta p (L) =- \frac{j_m^2}{\rho_0} \cdot \frac{f_0}{2 \, d} \cdot \frac{ 1- \exp \left( - c^* \rho^* G \, L \right)}{c^* \rho^* G}

f(l)= f_0 = \rm const

\rho(l)=\rho^* \cdot (1 + c^* \, p)


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ] 

  • No labels