Page tree
Skip to end of metadata
Go to start of metadata

The pressure drop in pipe flow due to fluid friction with pipe walls depends on mass flux density and friction factor distribution along the pipe.

(1) \left( \frac{dp}{dl} \right)_f = - \frac{ j_m^2}{2 d} \cdot \frac{f(l)}{\rho(l)}



pipe length 

j_m = \dot m \, / A = \rho_0 \, q_0 \, / A

mass flux

\dot m (l) = \dot m = \rm const

mass flowrate 


intake flowrate 


intake fluid density


pipe diameter

A = 0.25 \, \pi \, d^2

pipe cross-section area

f= f({\rm Re}, \epsilon)

Darcy friction factor


inner pipe walls roughness

\displaystyle {\rm Re} = \frac{j_m \, d}{\mu}

Reynolds number 

\mu(T, p)

dynamic viscosity as function of fluid temperature T and pressure p

The accurate calculations require
solving of a self-consistent equation of Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model.

There are few popular practical approximations based on assumption of constant friction factor and  linear density-pressure equation of state.


(2) \Delta p(L)=- \frac{j_m^2}{\rho_0} \cdot \frac{f_0 \, L}{2 \, d } = - \frac{8}{\pi^2} \frac{\rho_0 \, q_0^2}{d^5} \, f_0 \, L

f(l)= f_0 = \rm const

\rho(l)=\rho_0= \rm const

Incompressible fluid
(3) \Delta p (L) =- \frac{\rho_0}{c^*} \cdot \left[ 1 - \sqrt{ 1 - j_m^2 \cdot \frac{c^* \rho^*}{\rho_0^2} \cdot \frac{f_0 L}{d}} \right]

f(l)= f_0 = \rm const

\rho(l)=\rho^* \cdot (1 + c^* \, p)

c^* \, p \ll 1

Slightly compressible fluid
(4) \Delta p (L) =- p_0 \cdot \left[ 1- \sqrt{ 1 - \frac{j_m^2}{\rho_0 \, p_0} \cdot \frac{f_0 L}{d} } \right]

f(l)= f_0 = \rm const

\displaystyle \rho(l)= \frac{\rho_0}{p_0} \cdot p

Ideal gas
(5) \Delta p (L) =- \frac{j_m^2}{\rho_0} \cdot \frac{f_0}{2 \, d} \cdot \frac{ 1- \exp \left( - c^* \rho^* G \, L \right)}{c^* \rho^* G}

f(l)= f_0 = \rm const

\rho(l)=\rho_0 \cdot \exp (c^* \rho^* G \, l)

Gravity dominated fluid density distribution

See also

Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ] 

Fluid friction with pipeline walls ][ Darcy friction factor in water producing/injecting wells @model ]

  • No labels