Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

In case of dual-barrier well completion with flowing fluid in the annulus (see Fig. 3) the HTC is defined by the following equation:

(1) \frac{1}{ d_{ti} \, U} = \frac{1}{d_{ti} \, U_{ti}} + \frac{1}{\lambda_t} \, \ln \frac{d_t}{d_{ti}} + + \frac{1}{\lambda_{a, \rm eff}} \ln \frac{d_{ci}}{d_t} + \frac{1}{\lambda_c} \ln \frac{d_c}{d_{ci}} + \frac{1}{\lambda_{cem}} \ln \frac{d_w}{d_c}

where

d_t = 2 \cdot r_t

outer radius of tubing (with outer radius r_t)

d_{ti} = 2 \cdot r_{ti}

inner diameter of the tubing (with inner radius r_{ti})

h_t = r_t - r_{ti}

tubing wall thickness

d_c = 2 \cdot r_c

outer radius of casing (with outer radius r_c)

d_{ci} = 2 \cdot r_{ci}

inner diameter of the casing (with inner radius r_{ci})

h_c = r_c - r_i

casing wall thickness

\lambda_t

thermal conductivity of tubing material

\lambda

thermal conductivity of fluid moving through the tubing

\lambda_{a, \rm eff} = \lambda_a \cdot \epsilon_a

effective thermal conductivity of the annulus 

\epsilon_a

Natural Convection Heat Transfer Multiplier

\lambda_a

thermal conductivity of fluid in the annulus

\displaystyle U_{ti} = \frac{\lambda}{d_{ti}} \, {\rm Nu}_{ti}

heat transfer coefficient (HTC)
between inner surface of tubing and moving fluid


See also


Physics / Thermodynamics / Heat Transfer /  Heat Transfer Coefficient (HTC) / Heat Transfer Coefficient (HTC) @model

Thermal conductivity ] [ Nusselt number (Nu) ]

  • No labels