Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pressure Profile in L-Proxy Pipe Flow @model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations


Pressure profile along the pipe
(1) L =\int_{\rho_0}^{\rho} \frac{\rho \, dp}{G \, \rho^2 - F} -\frac{j_m^2}{2} \, \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}

where

\displaystyle j_m = \frac{ \dot m }{ A}

mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0}

Intake volumetric flowrate

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f(T,p) = f({\rm Re}(T,p), \, \epsilon)

Darcy friction factor 

\displaystyle {\rm Re}(T,p) = \frac{u(l) \cdot d}{\nu(l)} = \frac{j_m \cdot d}{\mu(T,p)}

Reynolds number in Pipe Flow

\mu(T,p)

dynamic viscosity as function of fluid temperature  T and pressure  p

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

G = g \, \cos \theta


F = j_m^2 \cdot f/(2d)




The equation  (1)  can also be written in the following form:

Pressure profile along the pipe
(2) ...

where

\Phi = \frac{1}{64} \cdot {\rm Re} \cdot f

Reduced Friction Factor



See also

References


  • No labels