Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 22 Next »

@wikipedia


Momentum equation for Inviscid fluid flow (a partial case of Navier–Stokes equation):

(1) \frac{\partial {\bf u}}{\partial t} + ({\bf u} \cdot \nabla) {\bf u} = - \frac{1}{\rho} \, \nabla p + {\bf g} +\frac{1}{\rho} \cdot {\bf f}_{\rm cnt}

where

\rho

fluid density

\nu

fluid kinematic viscosity

{\bf g}

resulting volumetric body force exerted on fluid body

{\bf f}_{\rm cnt}

volumetric density of all contact forces exerted on fluid body

Approximations



1D non-stationary fluid flow (for example along a pipeline trajectory) takes form:

(2) \rho \left( \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial l} \right)= -\frac{\partial p}{\partial l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}

where

l

measured length  along the 1D flow trajectory 

\theta

the angle between the body force and the tangent to the flow trajectory 


1D stationary fluid flow (for example along a pipeline trajectory) takes form:

(3) \frac{d p}{d l} = -\rho \, u \, \frac{\partial u}{\partial l} + \rho \, g \, \cos \theta + f_{\rm cnt, \, l}

which is a guiding equation in practical pipe flow simulations.


In case of incompressible fluid  \rho = \rm const in Earth's Gravity with no friction it simplifies to what is called a Bernoulli equation:

(4) \frac{p(l)}{\rho} + \frac{u^2}{2} - g \cdot z(l) = \rm const

where

z(l) = l \, \cos \theta

elevation along the 1D flow trajectory 

g

standard gravity constant

See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Fluid flow / Navier–Stokes equation


  • No labels