Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

@wikipedia


Motivation



The pipeline and wellbore flow simulations require a model of fluid pressure  p variation as a function of elevation z:

(1) p = p(z)


Output


p(z)

Fluid pressure  p 


Intput


z

\rho_0

Fluid density at Logging reference point  z_0

z_0

Logging reference point (usually at surface)

c_0

Fluid Compressibility at Logging reference point  z_0

g

Standard gravity constant



Equation



The static balance equation for fluid column is:

(2) \frac{dp}{dz}= \rho(p) \cdot g



Approximations



Incompressible fluids

Ideal gases

Full-range model
(3) p(z) = p_0 + \rho_0 \cdot g \cdot (z-z_0)
(4) p(z) = p_0 \cdot \exp \left[ - \frac{M \, g}{R \, T} \cdot (z-z_0) \right]
(5) \frac{1+ c_0 \, p(z)}{1 + c_0 \, p_0} = \exp \left[ \frac{ с_0 \cdot \rho_0 \cdot g \cdot (z-z_0)}{1+c_0 \, p_0} \right]
(6) p_2 - p_1 = \rho_0 \cdot g \cdot (z_2-z_1)

(7) p_2 - p_1 = \frac{ (1+c_0 \, p_1)}{c_0} \cdot \left( \exp \left[ \frac{ с_0 \cdot \rho_0 \cdot g \cdot (z_2-z_1)}{1+c_0 \, p_0} \right] - 1 \right)

Also known as Hydrostatic Boltzmann pressure distribution




The pressure drop between two points is going to be:


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Statics

Fluid Dynamics ]


  • No labels