Page tree

@wikipedia


Motivation



The pipeline and wellbore flow simulations require a model of static fluid pressure
  p variation as a function of elevation z:

(1) p = p(z)


Output



p(z)

Fluid pressure  p 


Input




z

\rho_0

Fluid density at Logging reference point  z_0

z_0

Logging reference point (usually at surface)

c_0

Fluid Compressibility at Logging reference point  z_0

g

Standard gravity constant



Equation



The static balance equation for fluid column is:

(2) \frac{dp}{dz}= \rho(p) \cdot g


Approximations



Incompressible fluid

Ideal Gas

(Barometric formula)

Full-range model
(3) p(z) = p_0 + \rho_0 \cdot g \cdot (z-z_0)
(4) p(z) = p_0 \cdot \exp \left[ - \frac{\rho_0 \, g}{p_0} \cdot (z-z_0) \right]
(5) \frac{1+ c_0 \, p(z)}{1 + c_0 \, p_0} = \exp \left[ \frac{ с_0 \cdot \rho_0 \cdot g \cdot (z-z_0)}{1+c_0 \, p_0} \right]
(6) p_2 - p_1 = \rho_0 \cdot g \cdot (z_2-z_1)
(7) p_2 - p_1 = p_1 \cdot \left( \exp \left[ \frac{ \rho_0 \cdot g \cdot (z_2-z_1)} {p_0} \right] - 1 \right)
(8) p_2 - p_1 = \frac{ (1+c_0 \, p_1)}{c_0} \cdot \left( \exp \left[ \frac{ с_0 \cdot \rho_0 \cdot g \cdot (z_2-z_1)}{1+c_0 \, p_0} \right] - 1 \right)


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Statics

Fluid Dynamics ]


  • No labels