Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 22 Next »


The general form of objective function  for production targets optimisation is given by:

(1) G(t) = \sum_{p=1}^{N^{\uparrow}} \left[ R_O \cdot q^{\uparrow}_{O, p} + R_G \cdot q^{\uparrow}_{G, p} \right] - \sum_{p=1}^{N^{\uparrow}} C^{\uparrow}_L \cdot q^{\uparrow}_{L, p} - \sum_{p=1}^{N^{\uparrow}} C_O \cdot q^{\uparrow}_{O, p} - \sum_{p=1}^{N^{\uparrow}} C_G \cdot q^{\uparrow}_{G, p} - \sum_{p=1}^{N^{\uparrow}} C_W \cdot q^{\uparrow}_{W, p} - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_W \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_G \cdot q^{\downarrow}_{G, i} \rightarrow \rm max

where

q^{\uparrow}_{O, p}

oil production rate for  p-th producer, volume/day

C_O

cost of oil treatment at surface, cash/volume

R_O

oil price, cash/volume

q^{\uparrow}_{G, p}

gas production rate for  p-th producer, volume/day

C_G

cost of gas treatment at surface, cash/volume

R_G

gas price, cash/volume

q^{\uparrow}_{W, p}

water production rate for  p-th producer, volume/day

C_W

cost of water treatment at surface, cash/volume

N^{\uparrow}

number of producers

q^{\uparrow}_{L, p}

liquid production rate for  p-th producer, volume/day

C^{\uparrow}_L

cost of fluid lift, cash/volume

N^{\downarrow}_W

number of water injectors

q^{\downarrow}_{W, i}

water injection rate for  i-th water injector, volume/day

C^{\downarrow}_W

cost of water injection, cash/volume

N^{\downarrow}_G

number of gas injectors

q^{\downarrow}_{G, i}

gas injection rate for  i-th gas injector, volume/day

C^{\downarrow}_G

cost of gas injection, cash/volume

t

time


This can be rewritten in terms of sandface flowrates:

(2) G = \sum_{p=1}^{N_{\rm prod}} G^{\uparrow}_{ut,p} \cdot q^{\uparrow}_{t, p} - \sum_{i=1}^{N_{W, \rm inj}} G^{\downarrow}_w \cdot q^{\downarrow}_{w, i} - \sum_{j=1}^{N_{G, \rm inj}} G^{\downarrow}_g \cdot q^{\downarrow}_{g, i} \rightarrow \rm max

where

\displaystyle G^{\uparrow}_{t,p}

\displaystyle G^{\downarrow}_w = B_w \cdot C_{W, \rm inj}

\displaystyle G^{\downarrow}_g = B_g \cdot C_{G, \rm inj}


(3) G = \sum_{p=1}^{N_{\rm prod}} \left[ (R_O -C_O) \cdot q^{\uparrow}_{O, p} + (R_G-C_G) \cdot q^{\uparrow}_{G, p} - C_L \cdot q^{\uparrow}_{L, p} - C_W \cdot q^{\uparrow}_{W, p} \right] - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max
(4) G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot q^{\uparrow}_{O, p} - (C_L + C_W \cdot Y_w) \cdot q^{\uparrow}_{L, p} \right] - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max
(5) G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot (1-Y_w) - (C_L + C_W \cdot Y_w) \right] \cdot q^{\uparrow}_{L, p} - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max



See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology 




  • No labels