Page tree


The general form of objective function  for production targets optimisation is given by:

(1) G = \sum_{y=1}^{N_y} \frac{AG_y}{(1+r)^y} \rightarrow \rm max
(2) AG_y = \sum_{t=1+y_t}^{365+y_t} G_t = \sum_{t=1+y_t}^{365+y_t} \left( G_t^{+} - G_t^{-} \right)


(3) G_t^{+} = \sum_{k=1}^{N^{\uparrow}_P} \left[ R_O(t) \cdot q^{\uparrow}_{O, k}(t) + R_G(t) \cdot q^{\uparrow}_{G, k}(t) \right]
(4) G_t^{-} = \sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{L,k} \cdot q^{\uparrow}_{L, k}(t) +\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{O,k} \cdot q^{\uparrow}_{O, k} (t) +\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{G,k} \cdot q^{\uparrow}_{G, k} (t) +\sum_{k=1}^{N^{\uparrow}_P} C^{\uparrow}_{W,k} \cdot q^{\uparrow}_{W, k}(t) +\sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i}(t) +\sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t) + C_{WS} \cdot q_{WS}(t) + C_{GS} \cdot q_{GS}(t)
(5) q_{WS}(t) = \sum_{i=1}^{N^{\downarrow}_W} q^{\downarrow}_{W, i}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, k}(t)
(6) C_{WS}(t)= \begin{cases} C^{\uparrow}_{WS}(t), & \mbox{if } q_{WS}(t)>0 \\ C^{\downarrow}_{WS}(t), & \mbox{if } q_{WS}(t)<0 \end{cases}
(7) q_{GS}(t) = \sum_{j=1}^{N^{\downarrow}_G} q^{\downarrow}_{G, j}(t) - \sum_{k=1}^{N^{\uparrow}_P} q^{\uparrow}_{G, k}(t)
(8) C_{GS}(t)= \begin{cases} C^{\uparrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 \\ C^{\downarrow}_{GS}(t), & \mbox{if } q_{GS}(t) > 0 \end{cases}


where

N_y

yearsassessment period

t

days

running time in the form of the number of days past the start of production  t=0

y_t

years

number of whole years past the start of production by the current moment  t

r

discount rate





q^{\uparrow}_{O, k}(t)

volume/day

oil production rate for  k-th producer

C^{\uparrow}_{O,k}(t)

cash/volume

cost of produced oil treatment and transportation from  k-th wellhead to CTM

R_O(t)

cash/volumeoil selling price

q^{\uparrow}_{G, k}(t)

volume/day

gas production rate for  k-th producer

C^{\uparrow}_{G,k}(t)

cash/volume

cost of produced gas treatment and transportation from  k-th wellhead to CTM

R_G(t)

cash/volumegas selling price

q^{\uparrow}_{W, k}(t)

volume/day

water production rate for  k-th producer

C^{\uparrow}_{W,k}(t)

cash/volume

cost of produced water treatment and transportation from  k-th wellhead to CTM

N^{\uparrow}_P(t)

counts

number of producers at  t

q^{\uparrow}_{L, k}(t)

volume/day

liquid production rate for  k-th producer

C^{\uparrow}_{L, k}(t)

cash/volume

cost of fluid lift from reservoir to the  k-th wellhead, cash/volume




q_{WS}(t)

volume/day

water supply/disposal rate

C^{\uparrow}_{WS}(t)

cash/volumecost of water supply

C^{\downarrow}_{WS}(t)

cash/volumecost of water disposal

q_{GS}(t)

volume/daygas supply/disposal rate

C^{\uparrow}_{GS}(t)

cash/volumecost of gas supply

C^{\downarrow}_{GS}(t)

cash/volumecost of gas disposal

q^{\downarrow}_{W, i}(t)

volume/day

water injection rate for  i-th water injector

C^{\downarrow}_{W,i}(t)

cash/volume

cost of water injection, including treatment, transportation and pumping into  i-th well

N^{\downarrow}_W(t)

counts

number of water injectors at  t

q^{\downarrow}_{G, i}(t)

volume/day

gas injection rate for  i-th gas injector

C^{\downarrow}_{G,j}(t)

cash/volume

cost of gas injection, including purchase, treatment, transportation and pumping into  i-th well

N^{\downarrow}_G(t)


counts


number of gas injectors at  t


The objective function   (1) can be rewritten in terms of Surface flowrates  \{ q^{\uparrow}_L, q^{\downarrow}_W, q^{\downarrow}_G \} and usual subject to engineering restrictions:

(9) G_t = \sum_{p=1}^{N^{\uparrow}_P} C^{\uparrow}_{OGW}(t) \cdot q^{\uparrow}_{L, p}(t) - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,i} \cdot q^{\downarrow}_{W, i}(t) - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}(t) - C_{WS} \cdot q_{WS}(t) - C_{GS} \cdot q_{GS}(t)
(10) C^{\uparrow}_{OGW}(t) = \left[ (R_O(t) - C^{\uparrow}_{O,p}) + (R_G(t) - C^{\uparrow}_{G,p}) \cdot Y_{G,p}(t) \right] \cdot (1- Y_{W,p}(t)) - C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p}(t)
(11) 0 \leq q^{\uparrow}_{L, p}(t) \leq q^{\uparrow}_{LMAX, p}(t)
(12) 0 \leq q^{\downarrow}_{W, i}(t) \leq q^{\downarrow}_{WMAX, i}(t)
(13) 0 \leq q^{\downarrow}_{G, j}(t) \leq q^{\downarrow}_{GMAX, j}(t)
(14) \sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{L, p}(t) \leq q^{\uparrow}_{LMAX}
(15) q^{\downarrow}_{WMIN}(t) \leq \sum_{i=1}^{N^{\downarrow}_W} q^{\downarrow}_{W, i}(t) \leq q^{\downarrow}_{WMAX}
(16) \sum_{j=1}^{N^{\downarrow}_G} q^{\downarrow}_{G, j}(t) \leq q^{\downarrow}_{GMAX}

(17) q^{\downarrow}_{WMIN}(t) = \sum_{p=1}^{N^{\uparrow}_P} q^{\uparrow}_{W, p}(t)


where

Y_{W,k}(t) = q_{W,k} / q_{L,k}

Watercut in  k-th well

Y_{G,k}(t) = q_{G,k} / q_{O,k}

Gas-Oil Ratio in  k-th well




The objective function   (9) can be further rewritten in terms of Sandface flowrates  \{ q^{\uparrow}_t, q^{\downarrow}_w, q^{\downarrow}_g \}:

(18) G = \sum_{k=1}^{N^{\uparrow}_P} G^{\uparrow}_{t,k} \cdot q^{\uparrow}_{t, k} - \sum_{i=1}^{N^{\downarrow}_W} G^{\downarrow}_{w,i} \cdot q^{\downarrow}_{w, i} - \sum_{j=1}^{N^{\downarrow}_G} G^{\downarrow}_{g,j} \cdot q^{\downarrow}_{g, j} - - C_{WS} \cdot q_{WS}(t) - C_{GS} \cdot q_{GS}(t) \rightarrow \rm max
(19) G^{\uparrow}_{t,k} = \frac{\left[ (R_O - C^{\uparrow}_{O,k}) + (R_G - C^{\uparrow}_{G,k}) \cdot Y_{G,k} \right] \cdot (1- Y_{W,k}) - C^{\uparrow}_{L,k} - C^{\uparrow}_{W,k} \cdot Y_{W,k} } {B_{w,k} Y_{W,k} + \left[ (B_{o,k} - R_{s,k} B_{g,k}) + (B_{g,k} - R_{v,k} B_{o,k}) \, Y_{G,k} \right] \cdot (1-Y_{w,k})}
(20) G^{\downarrow}_{w,i} = B_{w,i} C^{\downarrow}_{W,i}
(21) G^{\downarrow}_{g,i} = B_{g,i} \cdot C^{\downarrow}_{G,i}


where

B_{w,k} = B_w(p_{wf,k}(t))

Water FVF for  k-th well

p_{wf,k}(t)

BHPin  k-th well

B_{o,k} = B_o(p_{wf,k}(t))

Oil FVF for  k-th well

R_{s,k} = R_s(p_{wf,k}(t))

 Solution GOR in  k-th well

B_{g,k} = B_g(p_{wf,k}(t))

Gas FVF for  k-th well

R_{v,k} = R_v(p_{wf,k}(t))

 Vaporized Oil Ratio in  k-th well


(22) G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ (R_O - C^{\uparrow}_{O,p}) \cdot q^{\uparrow}_{O, p} + (R_G - C^{\uparrow}_{G,p}) \cdot q^{\uparrow}_{G, p} - C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot q^{\uparrow}_{W, p} \right] - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}
(23) G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ \left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{G,p} \right] \cdot q^{\uparrow}_{O, p} - C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p} \cdot q^{\uparrow}_{L, p} \right] - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}
(24) G(t) = \sum_{p=1}^{N^{\uparrow}_P} \left[ \left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{G,p} \right] \cdot (1- Y_{W,p}) - C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{w,p} \right] \cdot q^{\uparrow}_{L, p} - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot q^{\downarrow}_{G, j}

Translating  q^{\downarrow}_{W, i} and  q^{\downarrow}_{G, j} to Sandface flowrates  q^{\downarrow}_{w, i}  and  q^{\downarrow}_{g, j} with formation volume factor and substituting liquid production rate  q^{\uparrow}_{L, p} from  (Liquid production rate = qL:1) one arrives to:

(25) G(t) = \sum_{p=1}^{N^{\uparrow}_P} \frac{\left[ (R_O - C^{\uparrow}_{O,p}) + (R_G - C^{\uparrow}_{G,p}) \cdot Y_{g,p} \right] \cdot (1- Y_{w,p}) - C^{\uparrow}_{L,p} - C^{\uparrow}_{W,p} \cdot Y_{W,p} } {B_w Y_{W,p} + \left[ (B_o - R_s B_g) + (B_g - R_v B_o) \, Y_{G,p} \right] \cdot (1-Y_{W,p})} \cdot q^{\uparrow}_{t, p} - \sum_{i=1}^{N^{\downarrow}_W} C^{\downarrow}_{W,j} \cdot B_w \cdot q^{\downarrow}_{w, i} - \sum_{j=1}^{N^{\downarrow}_G} C^{\downarrow}_{G,j} \cdot B_g \cdot q^{\downarrow}_{g, j}

which is equivalent to  (18).

Depending on Lift mechanism the rates in equation  (18) may be set directly or calculated from THP and formation pressure  p_e (which is a usual case in injection wells):

(26) q^{\uparrow}_{t, k} = J_{t,k} \cdot ( p_{e,k} - p_{wf,k} )
(27) q^{\downarrow}_{w,i} = J_{w,i} \cdot ( p_{wf,i} - p_{e,i} )
(28) q^{\downarrow}_{g,i} = J_{g,i} \cdot ( p_{wf,i} - p_{e,i} )

Producing wells may spontaneously vary between Constant rate production: qL = const and Constant pressure production: pwf = const (see Constant rate production: qL = const for alternation details).

See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology 

Constant rate production: qL = const ] [ Constant pressure production: pwf = const ] 




  • No labels