Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 13 Next »


The general form of objective function  for production targets optimisation is given by:

(1) G = \sum_{p=1}^{N_{\rm prod}} \left[ R_O \cdot q^{\uparrow}_{O, p} + R_G \cdot q^{\uparrow}_{G, p} \right] - \sum_{p=1}^{N_{\rm prod}} C_L \cdot q^{\uparrow}_{L, p} - \sum_{p=1}^{N_{\rm prod}} C_O \cdot q^{\uparrow}_{O, p} - \sum_{p=1}^{N_{\rm prod}} C_G \cdot q^{\uparrow}_{G, p} - \sum_{p=1}^{N_{\rm prod}} C_W \cdot q^{\uparrow}_{W, p} - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max

where

q^{\uparrow}_{O, p}

oil production rate for  p-th producer, volume/day

C_O

cost of oil treatment, cash/volume

R_O

oil price, cash/volume

q^{\uparrow}_{G, p}

gas production rate for  p-th producer, volume/day

C_G

cost of gas treatment, cash/volume

R_G

gas price, cash/volume

q^{\uparrow}_{W, p}

water production rate for  p-th producer, volume/day

C_W

cost of water treatment, cash/volume

q^{\uparrow}_{L, p}

liquid production rate for  p-th producer, volume/day

C_L

cost of fluid lift, cash/volume

q^{\downarrow}_{W, i}

water injection rate for  i-th water injector, volume/day

C_{W, \rm inj}

cost of water injection, cash/volume

q^{\downarrow}_{G, i}

gas injection rate for  i-th gas injector, volume/day

C_{G, \rm inj}

cost of gas injection, cash/volume


(2) G = \sum_{p=1}^{N_{\rm prod}} \left[ (R_O -C_O) \cdot q^{\uparrow}_{O, p} + (R_G-C_G) \cdot q^{\uparrow}_{G, p} - C_L \cdot q^{\uparrow}_{L, p} - C_W \cdot q^{\uparrow}_{W, p} \right] - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max
(3) G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot q^{\uparrow}_{O, p} - (C_L -C_W \cdot Y_w) \cdot q^{\uparrow}_{L, p} \right] - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max
(4) G = \sum_{p=1}^{N_{\rm prod}} \left[ \left[ (R_O -C_O) + (R_G-C_G) \cdot GOR \right] \cdot (1-Y_w) - (C_L -C_W \cdot Y_w) \right] \cdot q^{\uparrow}_{L, p} - \sum_{i=1}^{N_{W, \rm inj}} C_{W, \rm inj} \cdot q^{\downarrow}_{W, i} - \sum_{j=1}^{N_{G, \rm inj}} C_{G, \rm inj} \cdot q^{\downarrow}_{G, i} \rightarrow \rm max

See Also


Petroleum Industry / Upstream / Production / Field Development Plan

Subsurface Production / Well & Reservoir Management / [ Production Targets ]

Subsurface E&P Disciplines / Production Technology 




  • No labels