Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 20 Next »


A proxy model of watercut in producing well with reservoir saturation  s=\{ s_w, \, s_o, \, s_g \} and reservoir pressure p_e:

(1) {\rm Y_{wm}} = \frac{1 +\epsilon_g}{1 - \frac{M_{ro}}{M_{rw}} \cdot \frac{B_w}{B_o} }, \quad \epsilon_g = \frac{A}{q_t} \cdot M_{ro} \cdot \left[ \frac{\partial P_c}{\partial r} + (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \right]

where

B_w(p_e)

Water formation volume factor

B_o(p_e)

Oil formation volume factor

s

Reservoir saturation \{ s_w, \, s_o, \, s_g \}

M_{rw}(s)

Relative water mobility

M_{ro}(s)

Relative oil mobility

p_e

Current formation pressure

\rho_w

Water density

\rho_o

Oil density

g

Standard gravity constant

q_t

Total sandface flowrate 

A

Cross-sectional flow area

\alpha

Deviation of flow from horizontal plane

P_c(s)

capillary pressure




It provides a good estimate when the drawdown is much higher than delta pressure from gravity and capillary effects.



The model  (1) can also be used in gross field production analysis assuming homogeneous reservoir saturation: 

(2) s_w(t) = s_{wi} + (1-s_{wi}-s_{or}) \cdot \rm RF(t)/E_S

See also


Water cut (Yw)


  • No labels