Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 22 Next »

Motivation



The most accurate way to simulate Aquifer Expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Aquifer Expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the aquifer is not available which does not allow a proper modelling of aquifer expansion using a geological framework.

Besides many practical applications require only knowledge of cumulative water influx from aquifer under pressure depletion. 

This allows building an Aquifer Drive Models using analytical methods.


Inputs & Outputs



InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

p_i

initial formation pressure

q^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

B

water influx constant





\chi

aquifer diffusivity

A_e

net pay area


Detailing Inputs

B = \frac{\theta}{2\pi} \cdot A_e \cdot h_a \cdot \phi_a \cdot c_t

water influx constant

\theta

central angle of net pay area ↔ aquifer contact

h_a

aquifer effective thickness

\phi_a

aquifer porosity

c_t=c_r +c_w

aquifer total compressibility

c_r

aquifer pore compressibility 

c_w

aquifer water compressibility


Assumptions



Transient flow in Radial Composite Reservoir



Equations


(1) \frac{d Q^{\downarrow}_{AQ}}{dt} = q^{\downarrow}_{AQ}(t)

(2) q^{\downarrow}_{AQ}(t)= C_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
(3) p_a(t, r)= p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau

(4) \frac{\partial p_1}{\partial t_D} = \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}
(5) p_1(t = 0, r_D)= 0
(6) p_1(t, r_D=1) = 1
(7) \frac{\partial p_1}{\partial r_D} \bigg|_ {r_D=r_a/r_e} = 0

where  \displaystyle \dot p(\tau) = \frac{d p}{d \tau}


Transient flow in Radial Composite Reservoir:

(8) \frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]
(9) p_a(t = 0, r)= p(0)
(10) p_a(t, r=r_e) = p(t)
(11) \frac{\partial p_a}{\partial r} \bigg|_ {r=r_a} = 0

One can easily check that pressure from (3) honors the whole set of equations (4)(11) and as such defines a unique solution of the above problem.


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models


Reference


 1. van Everdingen, A.F. and Hurst, W. 1949. The Application of the Laplace Transformation to Flow Problems in Reservoirs. Trans., AIME 186, 305.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)

3. Klins, M.A., Bouchard, A.J., and Cable, C.L. 1988. A Polynomial Approach to the van Everdingen-Hurst Dimensionless Variables for Water Encroachment. SPE Res Eng 3 (1): 320-326. SPE-15433-PA. http://dx.doi.org/10.2118/15433-PA

  • No labels