Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 43 Next »


We start with  (Single-phase pressure diffusion @model:1):

(1) \phi \cdot c_t \cdot \partial_t p + \nabla {\bf u} + c \cdot ( {\bf u} \, \nabla p) = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(2) {\bf u} = - M \cdot ( \nabla p - \rho \, {\bf g})

and neglect the non-linear term  c \cdot ( {\bf u} \, \nabla p) for low compressibility fluid c \sim 0 which is equivalent to assumption of nearly constant fluid density: \rho(p) = \rho = \rm const.

Together with constant pore compressibility  c_\phi = \rm const this will lead to constant total compressibility  c_t = c_\phi + c \approx \rm const.

Assuming that permeability and fluid viscosity do not depend on pressure k(p) = k = \rm const and \mu(p) = \mu = \rm const one arrives to the differential equation with constant coefficients

(3) \phi \, c_t \cdot \partial_t p + \nabla {\bf u} = \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)
(4) {\bf u} = - \frac{k}{\mu} \cdot ( \nabla p - \rho \, {\bf g})

or

(5) \phi \, c_t \cdot \partial_t p + =   \nabla \left(  \frac{k}{\mu} \cdot ( \nabla p - \rho \, {\bf g})  \right) + \sum_k q_k(t) \cdot \delta({\bf r}-{\bf r}_k)


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / Single-phase pressure diffusion @model





  • No labels