Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
body--uriencoded--\displaystyle j_m = \frac%7B \dot m %7D%7B A%7D

mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \frac%7B \dot m %7D%7B \rho_0%7D

Intake volumetric flowrate

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f(T,p) = f(%7B\rm Re%7D(T,p), \, \epsilon)

Darcy friction factor 

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,p) = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7Bj_m \cdot d%7D%7B\mu(T,p)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,p)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and pressure 
LaTeX Math Inline
bodyp

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)


It can also be written in the following form:

Pressure profile along the pipe


LaTeX Math Block
anchorPressureProfile
alignmentleft
F(p, l)= \int_{p_0}^p \frac{dp}{\rho} -g \, \Delta z(l)
+ 0.5 \cdot j_m^2 \cdot \left[ 

\left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d} +

\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
  \right]

 = 0


where

LaTeX Math Inline
body--uriencoded--\Phi = \frac%7B1%7D%7B64%7D \cdot f \cdot %7B\rm Re%7D

Reduced Friction Factor


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

See Pressure Profile in Stationary Quasi-Isothermal Homogenous Pipe Flow @model


...