Motivation


Numerical quadrature solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Intake temperature 

Along-pipe temperature profile 

Intake pressure 

Intake flowrate 

Pipeline trajectory TVDss

Pipe cross-section area  

Inner pipe wall roughness

Assumptions


Steady-State flowQuasi-isothermal flow

Homogenous flow

Constant cross-section pipe area along hole

Constant inclinationConstant friction along hole


Equations


Pressure profile along the pipe


L =\int_{p_0}^{p} \frac{\rho \, dp}{G \, \rho^2 - F} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}


where

mass flux

mass flowrate

Intake volumetric flowrate

Intake fluid density 

elevation drop along pipe trajectory

Darcy friction factor 

Reynolds number in Pipe Flow

dynamic viscosity as function of fluid temperature  and density 

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

gravity acceleration along pipe 





See Derivation of Pressure Profile in GF-Proxy Pipe Flow @model



Alternative forms


Density form


L = L(\rho) =\int_{\rho_0}^{\rho} \frac{ 1}{G \, \rho^2 - F} \, \frac{ d\rho}{c(\rho)} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}


Approximations



\rho(p) = \tilde \rho \cdot \sqrt{ 1- \frac{f}{2d} \frac{j_m^2}{G} ( \rho_0^2 - {\tilde \rho}^2) }



\int_{\rho_0}^{\tilde \rho} \frac{d \rho}{ \rho^2 \, c(\rho)} = G \cdot L


where

no-flow pressure at the pipe end ()



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Pressure Profile in G-Proxy Pipe Flow @model