Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


Darcy friction factor 

LaTeX Math Inline
bodyf
 depends on Reynolds number and a shape and roughness 
LaTeX Math Inline
body\epsilon
of inner pipe walls:

LaTeX Math Block
alignmentleft
f = f({\rm Re}, \epsilon)


For a smooth (

LaTeX Math Inline
body\epsilon = 0
) tubular pipeline Darcy friction factor 
LaTeX Math Inline
bodyf
 can be estimated from various empirical correlations

LaTeX Math Block
anchor1
alignmentleft
f = 64 \, \rm Re^{-1}


LaTeX Math Inline
body\rm Re < 2,100


Laminar fluid flow

no universal correlations due to a high flow instability

LaTeX Math Inline
body2,100 < \rm Re < 4,000

Laminar-turbulent transition fluid flow

LaTeX Math Block
anchorf_4000
alignmentleft
f = 0.32 \, \rm Re^{-0.25}


LaTeX Math Inline
body4,000 < \rm Re < 50,000


Turbulent fluid flow

LaTeX Math Block
anchor1
alignmentleft
f = 0.184 \, \rm Re^{-0.2}


LaTeX Math Inline
body\rm Re > 50,000


Strong-turbulent fluid flow

where

LaTeX Math Inline
body{\rm Re}(l) = \frac{d \, v \, \rho}{\mu}

Reynolds number

LaTeX Math Inline
bodyd(l)

Inner diameter of a pipe

LaTeX Math Inline
body\mu(l) = \mu( \, p(l), \, T(l) \,)

dynamic fluid viscosity as function

LaTeX Math Inline
body\mu(p, T)
of pressure
LaTeX Math Inline
bodyp(l)
and temperature
LaTeX Math Inline
bodyT(l)
along the pipe


For non-smooth pipelines 

LaTeX Math Inline
body\epsilon > 0
the Darcy friction factor 
LaTeX Math Inline
bodyf
  can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

LaTeX Math Block
anchorf_CW
alignmentleft
\frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d}  + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)


Typical surface roughness of a factory steel pipelines is 

LaTeX Math Inline
body\epsilon
 = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.


Interpolated full-range model



The most popular full-range model of Darcy friction factor is:

LaTeX Math Block
anchorfD
alignmentleft
\begin{cases}
f = 64/\mbox{Re} & \forall &  \mbox{Re}<2,100
\\f = 0.03048 + k \cdot ( \mbox{Re} -2,100) &  \forall & 2,100 < \mbox{Re}<4,000 
\\f = f_{CW}( \mbox{Re}, \, \epsilon) & \forall & \mbox{Re}>4,000
\end{cases}

where

LaTeX Math Inline
body--uriencoded--f_%7BCW%7D(\mbox%7BRe%7D, \epsilon)

Colebrook–White correlation

LaTeX Math Inline
body--uriencoded--\displaystyle k = \frac%7B f_%7BCW%7D( \mbox%7BRe%7D =4,000, \, \epsilon) -0.03048%7D%7B1,900%7D

interpolation multiplier between laminar and turbulent flow regimes


Bellos full-range model


LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorCheng
alignmentleft
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 0.75 \cdot \ln \frac{{\rm Re}}{5.37} \right)^{-2 \,(1-a)\,b}
\cdot \left( 0.83 \cdot \ln \frac{3.41}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
LaTeX Math Block
anchor1
alignmentleft
a = \left[ 1+ \left( \frac{{\rm Re}}{2712} \right)^{8.4} \right]^{-1}
LaTeX Math Block
anchor1
alignmentleft
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{150} \right)^{1.8} \right]^{-1}


Cheng full-range model


LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorCheng
alignmentleft
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 1.8 \cdot \ln \frac{{\rm Re}}{6.8} \right)^{-2 \,(1-a)\,b}
\cdot \left( 2.0 \cdot \ln \frac{3.7}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
LaTeX Math Block
anchor1
alignmentleft
a = \left[ 1+ \left( \frac{{\rm Re}}{2720} \right)^9 \right]^{-1}
LaTeX Math Block
anchor1
alignmentleft
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{160} \right)^2 \right]^{-1}


Churchill full-range model



LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorChirchil
alignmentleft
\Phi = \left[ 1+ \frac{\left(\rm Re / 8 \right)^{12} }{ \left( \Theta_1 + \Theta_2 \right)^{1.5} }  \right]^{1/12}
LaTeX Math Block
anchor1
alignmentleft
\Theta_1 = \left[  2.457 \, \ln \left(  \left( \frac{7}{\rm Re} \right)^{0.9}  + 0.27 \, \frac{\epsilon}{d}  \right)   \right]^{16}
LaTeX Math Block
anchor1
alignmentleft
\Theta_2 = \left(  \frac{37530}{\rm Re} \right)^{16}


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ] [ Reduced Friction Factor (Φ) ]

Reference


Moody’s Friction Factor Calculator @ gmallya.com