@wikipedia


Darcy friction factor  depends on Reynolds number and a shape and roughness  of inner pipe walls:

f = f({\rm Re}, \epsilon)


For a smooth () tubular pipeline Darcy friction factor  can be estimated from various empirical correlations

f = 64 \, \rm Re^{-1}



Laminar fluid flow

no universal correlations due to a high flow instability

Laminar-turbulent transition fluid flow

f = 0.32 \, \rm Re^{-0.25}



Turbulent fluid flow

f = 0.184 \, \rm Re^{-0.2}



Strong-turbulent fluid flow

where

Reynolds number

Inner diameter of a pipe

dynamic fluid viscosity as function of pressure and temperature along the pipe


For non-smooth pipelines  the Darcy friction factor   can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

\frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d}  + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)


Typical surface roughness of a factory steel pipelines is  = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.


Interpolated full-range model



The most popular full-range model of Darcy friction factor is:

\begin{cases}
f = 64/\mbox{Re} & \forall &  \mbox{Re}<2,100
\\f = 0.03048 + k \cdot ( \mbox{Re} -2,100) &  \forall & 2,100 < \mbox{Re}<4,000 
\\f = f_{CW}( \mbox{Re}, \, \epsilon) & \forall & \mbox{Re}>4,000
\end{cases}

where

Colebrook–White correlation

interpolation multiplier between laminar and turbulent flow regimes


Bellos full-range model


f = \frac{64}{\rm Re} \cdot \Phi
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 0.75 \cdot \ln \frac{{\rm Re}}{5.37} \right)^{-2 \,(1-a)\,b}
\cdot \left( 0.83 \cdot \ln \frac{3.41}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
a = \left[ 1+ \left( \frac{{\rm Re}}{2712} \right)^{8.4} \right]^{-1}
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{150} \right)^{1.8} \right]^{-1}


Cheng full-range model


f = \frac{64}{\rm Re} \cdot \Phi
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 1.8 \cdot \ln \frac{{\rm Re}}{6.8} \right)^{-2 \,(1-a)\,b}
\cdot \left( 2.0 \cdot \ln \frac{3.7}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
a = \left[ 1+ \left( \frac{{\rm Re}}{2720} \right)^9 \right]^{-1}
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{160} \right)^2 \right]^{-1}


Churchill full-range model



f = \frac{64}{\rm Re} \cdot \Phi
\Phi = \left[ 1+ \frac{\left(\rm Re / 8 \right)^{12} }{ \left( \Theta_1 + \Theta_2 \right)^{1.5} }  \right]^{1/12}
\Theta_1 = \left[  2.457 \, \ln \left(  \left( \frac{7}{\rm Re} \right)^{0.9}  + 0.27 \, \frac{\epsilon}{d}  \right)   \right]^{16}
\Theta_2 = \left(  \frac{37530}{\rm Re} \right)^{16}


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ] [ Reduced Friction Factor (Φ) ]

Reference


Moody’s Friction Factor Calculator @ gmallya.com