Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_0

Fluid temperature at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Fluid pressure at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(T, p)

Fluid density 

LaTeX Math Inline
bodyq_0

Fluid flowrate  at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\mu(T, p)

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous
Steady-State flow
Isothermal or
Quasi-isothermal
conditions
 flow

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const


Equations

...

LaTeX Math Block
anchorPP
alignmentleft
\left( \rho(p) -  j_m^2 \cdot c(p)   \right) \cdot  \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l)  - \frac{ j_m^2 }{2 d} \cdot  f({\rm Re}, \, \epsilonp)
LaTeX Math Block
anchorp0
alignmentleft
p(l=0) = p_0




LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{j_m}{\rho(l)}
LaTeX Math Block
anchor1
alignmentleft
q(l) =A \cdot u(l)

where

LaTeX Math Inline
body--uriencoded--\displaystyle j_m =\frac%7B \rho_0 \, q_0%7D%7BA%7D= \rm const

mass flux

LaTeX Math Inline
bodyq_0 = q(l=0)

Fluid flowrate at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Fluid density at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(l) = \rho(T(l), p(l))

Fluid density at any point 

LaTeX Math Inline
bodyl

LaTeX Math Inline
body--uriencoded--\displaystyle с(p) = \frac%7B1%7D%7B\rho%7D \left( \frac%7B\partial \rho%7D%7B\partial p%7D \right)_T

Fluid Compressibility

LaTeX Math Inline
body--uriencoded--f(T, \rho) = f(%7B\rm Re%7D(T, \rho), \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,\rho) = \frac%7Bj_m \cdot d%7D%7B\mu(T,

p

\rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D= \rm const

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.

...

LaTeX Math Inline
body\rho(T, p) = \rho_0

...

LaTeX Math Inline
body\mu(T, p) = \mu_0

Alternative forms

...

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model : 

Pressure profilePressure gradient profileFluid velocityFluid rate
LaTeX Math Block
anchor
PPconst
PP
alignmentleft
p(l)
 
=
 
p_0 + \rho_0 \, g \, z(l) -
\frac{dp}{dl} = \left(   \frac{
j_m^2 f_0
dp}{
2
dl} \
, \rho_0 \, d} \cdot l LaTeX Math Block
anchorgradP
alignmentleft
right)_G +  \left(   \frac{dp}{dl}
=
 \
rho
right)_
0
K 
\,
 
g
+ 
\cos
 \
theta
left(
l)
  
-
 \frac{
j_m^2 f_0
dp}{
2
dl} \
, \rho_0 \, d}
LaTeX Math Block
anchor1
alignmentleft
q(l) =q_0 = \rm const
LaTeX Math Block
anchor1
alignmentleft
u(l) = u_0 = \frac{q_0}{A} = \rm const

...

right)_f

where

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_G = \rho \cdot g \cdot \cos \theta


gravity losses which represent  pressure losses for upward flow and pressure gain for downward flow

LaTeX Math Inline
body--uriencoded--

f_0 = f(%7B\rm Re%7D_0, \, \epsilon)Darcy friction factor at inlet point (

\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_K = u%5e2 \cdot \frac%7Bd \rho%7D%7Bdl%7D


kinematic losses, which grow contribution at high velocities 

LaTeX Math Inline
body

l=0

u = j_m / \rho
 and high fluid compressibility (like turbulent gas flow)

LaTeX Math Inline
body--uriencoded--\displaystyle

%7B\rm Re%7D_0= \frac%7Bj_m \, d%7D%7B\mu_0%7DReynolds number at inlet point (
LaTeX Math Inline
bodyl=0
)

\left( \frac%7Bdp%7D%7Bdl%7D \right)_f = - \frac%7B j_m%5e2%7D%7B2 d%7D \cdot \frac%7Bf%7D%7B\rho%7D


friction losses which are always negative along the flow direction


Approximations


Pressure Profile in G-Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\

mu_0

theta(l) = \

mu(T_0, p_0)

Dynamic Fluid Viscosity at inlet point (

LaTeX Math Inline
bodyl=0
)

...

titleDerivation

...

borderColorwheat
bgColormintcream
borderWidth7

...

LaTeX Math Inline
body\

...

theta(

...

l) = \

...

theta_0 = \rm const

...

LaTeX Math Inline
body

...

f(T, p)=f_0

...

...

\theta(l) =

...

\theta_0 = \

...

rm const

...

LaTeX Math Inline
body

...

f(T, p)=

...

f_0 = \rm const

...

LaTeX Math Inline
body--uriencoded--\

...

rho(T, p) = \

...

...

LaTeX Math Inline
body

...

\rho(p)=

...

\rho_0 = \rm const

...

LaTeX Math Inline
bodyT(t, l)=T(l)

Pressure Profile in Incompressible Isothermal Proxy Pipe Flow @modelclosed-form expression

LaTeX Math Inline
body\rho(p)=\rho_0 = \rm const
LaTeX Math Inline
bodyT=T_0 = \rm const
 (isothermal)

Pressure Profile in GC-proxy static fluid column @modelclosed-form expression

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
body\dot m = 0
 (no flow)

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_0 \, g \, \frac{dz}{dl}  - \frac{j_m^2  f_0}{2 \, \rho_0 \, d}

which leads to 

LaTeX Math Block Reference
anchorgradP
 after substituting 
LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D
  and can be explicitly integrated leading to 
LaTeX Math Block Reference
anchorPPconst
.

...

LaTeX Math Block Reference
anchorgradP

...

LaTeX Math Inline
body f(l) = f_0 = \rm const

...

Pressure Profile in GF-Proxy Pipe Flow @model

...


See also

...