Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 150 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Fluid temperature at inlet point ( l=0)

T(l)

Along-pipe temperature profile 

p_0

Fluid pressure at inlet point ( l=0)

\rho(T, p)

Fluid density 

q_0

Fluid flowrate  at inlet point ( l=0)

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations


(1) \left(\rho(p) - j_m^2 \cdot c(p) \right) \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l) - \frac{ j_m^2 }{2 d} \cdot f({\rm Re}, \, \epsilon)
(2) p(l=0) = p_0


(3) u(l) = \frac{j_m}{\rho(l)}
(4) q(l) =A \cdot u(l)

where

\displaystyle j_m =\frac{ \rho_0 \, q_0}{A}

mass flux

q_0 = q(l=0)

Fluid flowrate at inlet point ( l=0)

\rho_0 = \rho(T_0, p_0)

Fluid density at inlet point ( l=0)

\rho(l) = \rho(T(l), p(l))

Fluid density at any point  l

с(p)

Fluid Compressibility

f({\rm Re}, \, \epsilon)

Darcy friction factor

\displaystyle {\rm Re} = \frac{j_m \cdot d}{\mu(T, p)}

Reynolds number in Pipe Flow

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)



Approximations



Incompressible pipe flow 
\rho(T, p) = \rho_0 with constant viscosity  \mu(T, p) = \mu_0

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model : 

Pressure profilePressure gradient profileFluid velocityFluid rate
(5) p(l) = p_0 + \rho_0 \, g \, z(l) - \frac{j_m^2 f_0}{2 \, \rho_0 \, d} \cdot l
(6) \frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{j_m^2 f_0}{2 \, \rho_0 \, d}
(7) q(l) =q_0 = \rm const

(8) u(l) = u_0 = \frac{q_0}{A} = \rm const

where

f_0 = f({\rm Re}_0, \, \epsilon)

Darcy friction factor at inlet point ( l=0)

\displaystyle {\rm Re}_0= \frac{j_m \, d}{\mu_0}

Reynolds number at inlet point ( l=0)

\mu_0 = \mu(T_0, p_0)

Dynamic Fluid Viscosity at inlet point ( l=0)


Incompressible fluid  \rho(T, p) = \rho_0 = \rm const means that compressibility vanishes  c(p) = 0 and fluid velocity is going to be constant along the pipeline trajectory  u(l) = u_0 = \frac{q_0}{A} = \rm const.

For the constant viscosity  \mu(T, p) = \mu_0 = \rm const along the pipeline trajectory the Reynolds number  \displaystyle {\rm Re}(l) = \frac{j_m^2 \, d}{\mu_0} = \rm const and Darcy friction factor  f(l) = f({\rm Re}, \, \epsilon) = f_0 = \rm const are going to be constant along the pipeline trajectory.

Equation  (1) becomes:

(9) \frac{dp}{dl} = \rho_0 \, g \, \frac{dz}{dl} - \frac{j_m^2 f_0}{2 \, \rho_0 \, d}

which leads to  (6) after substituting  \displaystyle \cos \theta(l) = \frac{dz(l)}{dl}  and can be explicitly integrated leading to  (5).


The first term in the right side of 
(6) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In many practical applications the water in 
water producing wells or water injecting wells can be considered as incompressible and friction factor  can be assumed constant  f(l) = f_0 = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).


Pressure Profile in GF-Proxy Pipe Flow @model

Pressure Profile in GF-Proxy Pipe Flow @model



See also


  • No labels