Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Fluid temperature at inlet point ()

Along-pipe temperature profile 

Fluid pressure at inlet point ()

Fluid density 

Fluid flowrate  at inlet point ()

Pipeline trajectory TVDss

Pipe cross-section area  


Inner pipe wall roughness

Assumptions


Steady-State flowQuasi-isothermal flow

Homogenous flow

Constant cross-section pipe area along hole


Equations


\left( \rho(p) -  j_m^2 \cdot c(p)   \right) \cdot  \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l)  - \frac{ j_m^2 }{2 d} \cdot  f(p)
p(l=0) = p_0




u(l) = \frac{j_m}{\rho(l)}
q(l) =A \cdot u(l)

where

mass flux

Fluid flowrate at inlet point ()

Fluid density at inlet point ()

Fluid density at any point 

Fluid Compressibility

Darcy friction factor

Reynolds number in Pipe Flow

dynamic viscosity as function of fluid temperature  and density 

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.

Alternative forms


  \frac{dp}{dl} = \left(   \frac{dp}{dl} \right)_G +  \left(   \frac{dp}{dl} \right)_K  +  \left(   \frac{dp}{dl} \right)_f

where


gravity losses which represent  pressure losses for upward flow and pressure gain for downward flow


kinematic losses, which grow contribution at high velocities  and high fluid compressibility (like turbulent gas flow)


friction losses which are always negative along the flow direction


Approximations


Pressure Profile in G-Proxy Pipe Flow @modelquadrature

Pressure Profile in GF-Proxy Pipe Flow @modelquadrature

Pressure Profile in Incompressible Quasi-Isothermal Proxy Pipe Flow @modelquadrature

Pressure Profile in Incompressible Isothermal Proxy Pipe Flow @modelclosed-form expression

 (isothermal)

Pressure Profile in GC-proxy static fluid column @modelclosed-form expression

 (no flow)


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation 

Darcy friction factor ] [ Darcy friction factor @model ] [ Reynolds number in Pipe Flow ] [ Pressure Profile in G-Proxy Pipe Flow @model ]

Temperature Profile in Homogenous Pipe Flow @model ]

Fluid Compressibility ] Fluid Compressibility @model ]


References


PipeFlowSimulator.xls
Pressure loss in pipe @ neutrium.net 
R. Shankar, Pipe Flow Calculations, Clarkson University [PDF]
Pressure loss in chokes @ Studopedia