Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Specific data processing and interpretation workflow of type of Production Analysis (PA) workflow based on correlation between multi-well production/injection history and bottomhole pressure history from permanent downhole gauges  data (PDG).

The key simulation engine of MRT is Pressure Convolution which is based on unit-rate transient responses, usually acquired from multiwell deconvolution.

It includes the following stages:

...

groupeditors

...

bgColorpapayawhip

...

titleEditor

...

Despite of an obvious appeal this idea has a number of substantial drawbacks:

...

  1. One Drawdown transient response (DTR) for the PDG well which characterises the pressure response of the PDG well to its own rate variation
     
  2. N – 1 cross-well transient responses (CTR) for the interval between PDG and each of the N –1 surrounding wells and which characterises the impact the surrounding wells provide on the formation pressure in PDG well

Image Removed

...

This set of information represent a high value for reservoir engineers for daily planning and also valuable for simulation engineers for 3D model calibration.

The weakest point of RDCB is its inability to distinguish the contour button off two (or more) wells which were changing its rate synchronously (or did not change it at all) during the whole time of the PDG recordings. 

Case Study

...

Fig.1. Pressure and Rate history at producing well OP-6

Должна быть картинка иллюстрирующая грубую запись давления ТМС, грубую запись нагнетательной скважины (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

Image Removed

Fig. 2. Pressure and Rate history at injecting well  Wl4

...

Fig. 3. Cumulative Withdrawals at 01.05.17 (with underlying thikness map)

Image Removed

Fig. 4. Current Withdrawals at 01.05.17 (with underlying thinkness map)

Image Removed
Портянка (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)
Image Removed

Рис.5. Pressure and Rate history of well OP-6 и and rate history of surrounding wells.

ПХ (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

...

Image Removed

...

Image Removed

...

Fig. 7. Reconstruction of formation pressure history and delta pressure at well OP-6

...

Image Removed

...

Image Removed

...

Коррекция дебитов по центральной скважине – зум вокруг явной ошиьки в исторической записи (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

 Image Removed

...

groupeditors

...

bgColorpapayawhip

...

titleEditor

...

Несмотря на видимую привлекательность, на этом пути есть серьезные практически ограничения:

...

Unit-rate Transient Responses (UTR) retrieved from Production rates / PDG data history by means of Pressure Deconvolution.

It does not require new data acquisition at well site and makes use of historical dynamic data records, usually few months or longer.


Motivation

...


Production rate in producing well depends on its productivity index 

LaTeX Math Inline
bodyJ
, current formation pressure 
LaTeX Math Inline
bodyp_e
 and current BHP 
LaTeX Math Inline
body--uriencoded--p_%7Bwf%7D
:

LaTeX Math Block
anchorqup
alignmentleft
q_1^{\uparrow}(t)=J \cdot \left( p_e(t) - p_{wf}(t) \right)

and as such depends on completion/lift settings (defining 

LaTeX Math Inline
body--uriencoded--p_%7Bwf%7D(t)
) and how formation pressure is maintained 
LaTeX Math Inline
bodyp_e = p_e(t)
 over time.

It keeps declining due to the offtakes:

LaTeX Math Block
anchorpeup
alignmentleft
p_e(t) = p_e[q_1^{\uparrow}(t), q_2^{\uparrow}(t), q_3^{\uparrow}(t), \dots]

and maintained by either aquifer or Fluid Injection and in the latter case depends on injection rates:

LaTeX Math Block
anchorpedown
alignmentleft
p_e(t) = p_e[q_1^{\downarrow}(t),q_2^{\downarrow}(t),q_3^{\downarrow}(t),\dots ]

The combination of 

LaTeX Math Block Reference
anchorqup
LaTeX Math Block Reference
anchorpeup
 and 
LaTeX Math Block Reference
anchorpedown
 lead to the correlation between production rates, injection rates and bottomhole pressure variation.


The ultimate purpose of MRT is to extract maximum information from correlation between the long-term (few months or longer) flowrate history and BHP history (recorded by PDG).

It is essentially based on the fact that BHP in a given well (whether producing or injecting) responds to flowrate variation in the same well and may (or may not) respond to flowrate variation in offset wells.

This information is further related to well flow performance and cross-well connectivity.


Goals & Objectives

...


  • Create short-term prediction model on production response to various multi-well production regimes

  • Compare the well dynamics and and cross-well connectivity with expectations and identify the candidates for drilling, workover or additional well surveillance

  • Assess dynamic reservoir properties


Outputs

...


Production History



Simulated total subsurface flowrate history,

LaTeX Math Inline
bodyq_t(t)

Simulated BHP history,

LaTeX Math Inline
body--uriencoded--p_%7Bwf%7D(t)

Simulated formation pressure history,

LaTeX Math Inline
bodyp_e(t)

Simulated Productivity Index history,

LaTeX Math Inline
bodyJ_t(t)

Simulated Cross-well interference history

LaTeX Math Inline
body--uriencoded--p_%7Bk \rightarrow m%7D(t)

Production Forecast

Rate forecast under Pressure Control regime, 

LaTeX Math Inline
body--uriencoded--p_k(t), \%7B q_m(t) \%7D \rightarrow q_k(t)

BHP forecast under Liquid Control regime, 

LaTeX Math Inline
body--uriencoded--\%7B q_m(t) \%7D \rightarrow p_%7Bwf, \, k%7D(t)

Formation pressure forecast under Liquid Control regime, 

LaTeX Math Inline
body--uriencoded--\%7B q_m(t) \%7D \rightarrow p_%7Be, \, k%7D(t)

Diagnostic Metrics









Cross-well interference map
Unit-rate Transient Response Matrix (UTRM)
Unit-rate Transient Response Spider (UTRS)
Material Balance Pressure Plot
Inflow Performance Relationship (IPR)
Cumulative Productivity Plot (Hall Plot)
J-plots
WOR diagnostics
GOR diagnostics
Primary Well & Reservoir properties


Potential drainage volume
Current dynamic drainage volume
Secondary Well & Reservoir properties




Apparent transmissibility
Apparent skin-factor 
Fracture half-length
Dynamic fracture pressure threshold


Inputs

...



Applications

...


Production forecasts


Predict formation pressure without shutting wells down and avoiding production deferment
Short-term production forecasts for different multi-well production scenarios
Selecting well-intervention candidates




Identify well-intervention candidates with possible thief production/injection
Identify well-intervention candidates with possibly inefficient reservoir flow profile
Identifywell-intervention candidates for Rate Optimization
Identifywell-intervention candidates for producer ↔ injector conversion
Dynamic Model Calibration




Adjusting historical production allocation
Adjusting the potential reservoir volume extension at different directions
Adjusting faults / channels / compartmentalization
Adjusting fracture model


Workflow

...


MRT @workflow


Examples

...


MRT @sample


See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis

MRT @sample ] [ MRT @workflow ]

Permanent downhole gauges (PDG) ] Pressure Convolution  ] [ Pressure Deconvolution ] [ Multiwell Deconvolution (MDCV) ]

Radial Deconvolution (RDCV) ][ RDCV @model ]RDCV @sample ]

Cross-well Deconvolution (XDCV) ]XDCV @model ]XDCV @sample ] 

Material Balance Analysis ] [ Capacitance Resistance Model (CRM) ] Pressure Transient Analysis (PTA) ]

...

  1. Одна диагональная для центральной скважины ТМС, которая характеризует влияния смены режимов центральной скважины на ее собственное забойной давление
     
  2.  N-1 кросс-диагональных ПХ в направлении окружающих ее скважин, которые характеризуют влияние смены режимов окружающих скважин на пластовое давление в центральной скважины

...

Эта информация представляет собой большую ценность для оперативного анализа разработки, а также может использоваться для калибровки 3Д моделей.

Необходимо помнить, что помимо качества исходной информации методы МДКВ имеют и естественные ограничения по информативности, в случае если режимы скважин менялись слабо и редко. 

Пример

...

Рис.1. Запись давления ТМС и дебитов скважины OP-6

Должна быть картинка иллюстрирующая грубую запись давления ТМС, грубую запись нагнетательной скважины (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

Image Removed

Рис.2. Запись давления  и дебитов скважины Wl4

Карта с накопленными и текущими отборами (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)
Image Removed

Рис.3. Карта накопленных отборов на 01.05.17 (подложка - карта толщин)

Image Removed

Рис.4. Карта текущих отборов на 01.05.17 (подложка - карта толщин)
Портянка (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)
Image Removed

Рис.5. Дебиты и давления скважины OP-6 и дебиты окружающих скважин.

ПХ (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

...

Image Removed

...

Image Removed

...

Рис. 7. Реконструкция пластового давления и депрессии на пласт в скважине OP-6

...

Image Removed

...

Image Removed

...

Коррекция дебитов по центральной скважине – зум вокруг явной ошиьки в исторической записи (https://www.arax.team/company/personal/user/20/tasks/task/view/8642/)

 Image Removed

...