Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


Synonyms
Compressibility factorZ-factor

Disclaimer: Not to be confused with Compressibility 

LaTeX Math Inline
bodyc
.

Dimensionless multiplier describing the deviation of a fluid density from ideal gas estimate under the same pressure & temperature conditions:

...

LaTeX Math Inline
bodyp

fluidpressure

LaTeX Math Inline
bodyV_m = V/\nu

fluid molar volume

LaTeX Math Inline
bodyT

fluidtemperature

LaTeX Math Inline
bodyV

fluidvolume

LaTeX Math Inline
body\rho

fluid density

LaTeX Math Inline
body\nu

amount of substance

LaTeX Math Inline
bodyR

gas constant

LaTeX Math Inline
bodyM

molar mass of a fluid


Alternatively Z-factor can be expressed through the dynamic fluid properties at reference conditions as:

LaTeX Math Block
anchorP7SN4
alignmentleft
Z(T, p) = Z^{\circ} \cdot \frac{\rho^{\circ} \, T^{\circ}}{p^{\circ}} \cdot \frac{p}{\rho(T, p) \, T} 

where 

LaTeX Math Inline
body--uriencoded--()%5e%7B\circ%7D
 means reference conditions, usually Standard Conditions (STP).


Z-factor is related to  can be used to calculate fluid density 

LaTeX Math Inline
body\rho
 as
 and Formation Volume Factor (FVF) 
LaTeX Math Inline
bodyB
as:

LaTeX Math Block
anchorrho
alignmentleft
\rho(T, p) = \rho^{\circ} \cdot \frac{Z^{\circ} \, T^{\circ}}{p^{\circ}} \cdot \frac{p}{Z(T, p) \, T} 
LaTeX Math Block
anchorrho
alignmentleft
B(T, p) = 

...

\frac{\rho^{\circ}}{\rho(T, p)} =  \frac{p^{\circ} }{Z^{\circ} \, T^{\circ}} \cdot \frac{Z(T, p) \, T}{p} 


Z-factor is related to fluid compressibility 

LaTeX Math Inline
bodyc
as:

LaTeX Math Block
anchorZ_ccZ
alignmentleft
c(p) = \frac{1}{p} - \frac{1}{Z} \frac{dZ}{dp}
LaTeX Math Block
anchorZ_c
alignmentleft
Z(p) = Z_0 \cdot \frac{Z_0p}{p_0} \cdot p \cdot \exp \left[ - \int_{p_0}^p c(p) dp  \right]



Expand
titleDerivation
cZ
Panel
borderColorwheat
bgColormintcream
borderWidth7
LaTeX Math Block
anchor
cZder
alignmentleft
c = \frac{1}{\rho} \frac{d\rho}{dp}  = \frac{d \ln \rho}{dp} =  \frac{d }{dp} \left(  \ln  \left(\frac{p}{Z} \right)  \right) = \frac{Z}{p} \cdot \frac{d }{dp} \left(\frac{p}{Z} \right) = \frac{Z}{p} \cdot \left( \frac{1}{Z} + p \cdot \frac{d }{dp} \left( \frac{1}{Z} \right)   \right) = \frac{1}{p}  - \frac{1}{Z} \frac{dZ}{dp}
Integrating 

Rewriting 

LaTeX Math Block Reference
anchorcZ
:

LaTeX Math Block
anchorcZ
alignmentleft
\frac{d \ln Z}{dp} = \frac{1}{p} - c(p) \rightarrow \ln \frac{Z}{Z_0} = \ln \frac{p}{p_0} - \int_{p_0}^p c(p) \, dp

which

 one

arrives to 

LaTeX Math Block Reference
anchorZ_c
.


The
Z-factor value for Ideal Gas is strictly unit: 

LaTeX Math Inline
bodyZ(T, p) = 1
.

For many real gases (particularly for the most compositions of natural gases) the Z-factoris trending towards unit value (

LaTeX Math Inline
bodyZ \rightarrow 1
) while approaching the STP.

For incompressible fluids  the Z-factor is trending to  for incompressible fluids and linear pressure dependence (

LaTeX Math Inline
bodyZ \rightarrow a \cdot p
)  for strongly compressible Fluidswith pressure growth.

Modelling Z-factor 

LaTeX Math Inline
bodyZ(T,p)
as a function of fluidpressure 
LaTeX Math Inline
bodyp
 and temperature 
LaTeX Math Inline
bodyT
 is based on Equation of State.

...

Natural Science / Physics / Thermodynamics / Equation of State

[ Compressibility ]Fluid Compressibility ][ Gas compressibility ]

...