Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

...

Numerical quadrature solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)

LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  

LaTeX Math Inline
body\theta(l)

Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous
Steady-State flow
Isothermal or
Quasi-isothermal
conditions
 flow

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const

Constant inclinationConstant friction along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \theta(l) = \theta = %7B\rm const%7D \rightarrow \cos \theta = \frac%7Bdz%7D%7Bdl%7D = %7B\rm const%7D

LaTeX Math Inline
bodyf(l) = f = \rm const


Equations

...

Pressure profile along the pipe


LaTeX Math Block
anchorPressureProfile
alignmentleft
F(p, l)= L =\int_{p_0}^p^{p} \frac{dp}{\rho} -g \, \Delta z(l)
+ 0.5 \cdot j_m^2 \cdot \left[ 

\left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d} +

\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
  \right]

 = 0dp}{G \, \rho^2 - F} -\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}


where

LaTeX Math Inline
body--uriencoded--\displaystyle j_m = \frac%7B \dot m %7D%7B A%7D = \rm const

mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D = \rm const

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \frac%7B \dot m %7D%7B \rho_0%7D

Intake volumetric flowrate

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f(T,p) = f(%7B\rm Re%7D(T,p\rho), \, \epsilon) = \rm const

Darcy friction factor 

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,p) = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D \rho) = \frac%7Bj_m \cdot d%7D%7B\mu(T,p\rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,p\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and pressure density 
LaTeX Math Inline
bodyp\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

LaTeX Math Inline
bodyG = g \, \cos \theta = \rm const

gravity acceleration along pipe 

LaTeX Math Inline
body--uriencoded--F = j_m%5e2 \cdot f/(2d)

It can also be written in the following form:

= \rm const




Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in GF-Proxy Pipe Flow @model



Alternative forms

...

PressureProfileF(p, l)= p^pdp\rho}gDelta z(l) + 0.5 \cdot j_m^2 left( 1}{}\frac{1
Density form
Pressure profile along the pipe


LaTeX Math Block
anchor
1
alignmentleft
L = L(\rho) =\int_{
\rho_0}
^{\rho} \frac{
 1}{
G \, \rho^2 -
 F} \, \
frac{ d\rho}{c(\rho)} -\frac{d}{f} \cdot 
\
ln 
\frac{
F/\rho^2
 - 
G}{ F/\rho_0^2-G}


Approximations

...


LaTeX Math Block
anchor2
alignmentleft
\rho(p) = \tilde \
right)
rho \cdot 
+
\
frac
sqrt{
16
 1- \
, l
frac{f}{2d} \
,
frac{j_
m
m^2}{
d^2
G} ( \
cdot \left( \frac{\mu \, \Phi}{\rho^2} + \frac{\mu_0 \, \Phi_0}{\rho_0^2} \right) = 0
rho_0^2 - {\tilde \rho}^2) }



LaTeX Math Block
anchor2
alignmentleft
\int_{\rho_0}^{\tilde \rho} \frac{d \rho}{ \rho^2 \, c(\rho)} = G \cdot L


where

LaTeX Math Inline
body\tilde \rho

no-flow pressure at the pipe end (

LaTeX Math Inline
body--uriencoded--%7B\

Phi = \frac%7B1%7D%7B64%7D \cdot f \cdot %7B\rm Re%7DReduced Friction Factor

...

titleDerivation

tilde j%7D_m = 0
)



Panel
borderColorwheat
bgColormintcream
borderWidth7

See Pressure Profile in Stationary Quasi-Isothermal Homogenous Pipe Flow @model

See also

References

...

grouparax

...

bgColorpapayawhip
titleARAX

...