Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Darcy friction factor 

LaTeX Math Inline
bodyf
 depends on flow regime, as well as shape Reynolds number and a shape and roughness 
LaTeX Math Inline
body\epsilon
of inner pipe walls.:

LaTeX Math Block
alignmentleft
f = f({\rm Re}, \epsilon)


For a smooth (

LaTeX Math Inline
body\epsilon = 0
) tubular pipeline Darcy friction factor 
LaTeX Math Inline
bodyf
 can be estimated from various empirical correlations

...

LaTeX Math Block
anchorf_CW
alignmentleft
\frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d}  + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)

For many practical applications the Churchill correlation provides a fair (< 2 % accuracy and improving towards laminar flow) estimation of  Darcy friction factor 

LaTeX Math Inline
bodyf
 for all pipe flow regimes:


Typical surface roughness of a factory steel pipelines is 

LaTeX Math Inline
body\epsilon
 = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.


Interpolated full-range model

...


The most popular full-range model of Darcy friction factor is:

LaTeX Math Block
anchorfD
alignmentleft
\begin{cases}
f = 64/\mbox{Re} & \forall &  \mbox{Re}<2,100
\\f = 0.03048 + k \cdot ( \mbox{Re} -2,100) &  \forall & 2,100 < \mbox{Re}<4,000 
\\f = f_{CW}( \mbox{Re}, \, \epsilon) & \forall & \mbox{Re}>4,000
\end{cases}

where

LaTeX Math Inline
body--uriencoded--f_%7BCW%7D(\mbox%7BRe%7D, \epsilon)

Colebrook–White correlation

LaTeX Math Inline
body--uriencoded--\displaystyle k = \frac%7B f_%7BCW%7D( \mbox%7BRe%7D =4,000, \, \epsilon) -0.03048%7D%7B1,900%7D

interpolation multiplier between laminar and turbulent flow regimes


Bellos full-range model

...

LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorCheng
alignmentleft
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 0.75 \cdot \ln \frac{{\rm Re}}{5.37} \right)^{-2 \,(1-a)\,b}
\cdot \left( 0.83 \cdot \ln \frac{3.41}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
LaTeX Math Block
anchor1
alignmentleft
a = \left[ 1+ \left( \frac{{\rm Re}}{2712} \right)^{8.4} \right]^{-1}
LaTeX Math Block
anchor1
alignmentleft
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{150} \right)^{1.8} \right]^{-1}


Cheng full-range model

...

LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorCheng
alignmentleft
\Phi = \left( \frac{{\rm Re}}{64} \right)^{1-a}
\cdot \left( 1.8 \cdot \ln \frac{{\rm Re}}{6.8} \right)^{-2 \,(1-a)\,b}
\cdot \left( 2.0 \cdot \ln \frac{3.7}{\epsilon/d} \right)^{-2 \,(1-a)\,(1-b)}
LaTeX Math Block
anchor1
alignmentleft
a = \left[ 1+ \left( \frac{{\rm Re}}{2720} \right)^9 \right]^{-1}
LaTeX Math Block
anchor1
alignmentleft
b = \left[ 1+ \left( \frac{{\rm Re} \cdot \epsilon/d}{160} \right)^2 \right]^{-1}


Churchill full-range model

...


LaTeX Math Block
anchor1
alignmentleft
f = \frac{64}{\rm Re} \cdot \Phi
LaTeX Math Block
anchorChirchil
alignmentleft
\Phi = \left
LaTeX Math Block
anchorChirchil
alignmentleft
f = \frac{64}{\rm Re} \, \Bigg
[ 1+ \frac{\
big
left(\rm Re / 8 \
big
right)^{12} }{ \
big
left( \Theta_1 + \Theta_2 \
big
right)^{1.5} }  \
Bigg
right]^{1/12}
LaTeX Math Block
anchor1
alignmentleft
\Theta_1 = \left[  2.457 \, \ln \left(  \left( \frac{7}{\rm Re} \right)^{0.9}  + 0.27 \, \frac{\epsilon}{d}  \right)   \right]^{16}
LaTeX Math Block
anchor1
alignmentleft
\Theta_2 = \left(  \frac{37530}{\rm Re} \right)^{16}

...

LaTeX Math Inline
body\epsilon

...

See Surface roughness for more data on typical values for various materials and processing conditions.


See also

...

Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ] [ Reduced Friction Factor (Φ) ]

Reference

...

Moody’s Friction Factor Calculator @ gmallya.com

...