Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


A proxy model of watercut YW in producing well with reservoir saturation 

LaTeX Math Inline
bodys=\{ s_w, \, s_o, \, s_g \}
 and reservoir pressure
LaTeX Math Inline
bodyp_e
:

LaTeX Math Block
anchorFF
alignmentleft
{\rm Y_{

...

Wm}} = \frac{1  - 

...

\epsilon_g}{1 

...

+ \frac{M_{ro}}{M_{rw}}  \cdot \frac{B_w}{B_o} }

...

LaTeX Math Block
anchorepsilon
alignmentleft
\epsilon_g = \frac{A}{q_t} \cdot M_{ro} \cdot \left[ \frac{\partial P_c}{\partial r}  +  (\rho_w-\rho_o) \cdot g \cdot \sin \alpha \right]

where

LaTeX Math Inline
bodyB_w(p_e)

Water formation volume factor

LaTeX Math Inline
bodyB_o(p_e)

Oil formation volume factor

LaTeX Math Inline
bodys

Reservoir saturation

LaTeX Math Inline
body\{ s_w, \, s_o, \, s_g \}

LaTeX Math Inline
bodyM_{rw}(s)

Relative water mobility

LaTeX Math Inline
bodyM_{ro}(s)

Relative oil mobility

LaTeX Math Inline
bodyp_e

Current formation pressure

LaTeX Math Inline
body\rho_w

Water density

LaTeX Math Inline
body\rho_o

Oil density

LaTeX Math Inline
bodyg

Standard gravity constant

LaTeX Math Inline
bodyq_t

Total sandface flowrate 

LaTeX Math Inline
bodyA

Cross-sectional flow area

LaTeX Math Inline
body\alpha

Deviation of flow from horizontal plane

It provides a good estimate when the drawdown is much higher than delta pressure from gravity and capillary effects.

LaTeX Math Inline
bodyP_c(s)

capillary pressure




If capillary effects are not high 

LaTeX Math Inline
bodyP_c \rightarrow 0
or saturation does not vary along the streamline substantially 
LaTeX Math Inline
body\displaystyle \frac{\partial s_w}{\partial r} \rightarrow 0
, then 
LaTeX Math Inline
body\displaystyle \frac{\partial P_c}{\partial r} = \dot P_c \cdot \frac{\partial s_w}{\partial r} \approx 0
.

If flow is close to horizontal 

LaTeX Math Inline
body\sin \alpha \rightarrow 0
then gravity effects are vanishing too: 
LaTeX Math Inline
body(\rho_w-\rho_o) \cdot g \cdot \sin \alpha \approx 0
.

In these cases  

LaTeX Math Block Reference
anchorFF
 simplifies to:

LaTeX Math Block
anchorYwsimple
alignmentleft
{\rm Y_{Wm}} = \frac{1}{1 + \frac{M_{ro}}{M_{rw}}  \cdot \frac{B_w}{B_o} } = \frac{1}{1 + \frac{k_{ro}}{k_{rw}}  \cdot \frac{\mu_w }{\mu_o } \cdot \frac{B_w}{B_o}}


The models The model 

LaTeX Math Block Reference
anchorFF
 can
 and 
LaTeX Math Block Reference
anchorYwsimple
can also be used in gross field production analysis assuming homogeneous reservoir water saturation
LaTeX Math Inline
bodys_w

LaTeX Math Block
anchorJUML4
alignmentleft
s_w(t) = s_{wi} + (1-s_{wi}) \cdot \rm E_{Dow}(t) = s_{wi} + (1-s_{orwi}) \cdot \rm RFRFO(t)/E_S

where

LaTeX Math Inline
body\displaystyle {\rm RFO} = \frac{Q^{\uparrow}_O}{V_{\rm STOIIP}}


current oil recover factor

LaTeX Math Inline
bodyQ^{\uparrow}_O

cumulative oil production

LaTeX Math Inline
bodyV_{\rm STOIIP}

STOIIP

LaTeX Math Inline
bodyE_S

...

sweep efficiency

LaTeX Math Inline
bodys_{wi}

initial water saturation

LaTeX Math Inline
bodys_{orw}

residual oil saturation to water sweep



See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing (WT) / Flowrate Testing / Flowrate  / Production

See also

Water cut (Yw)

Watercut Diagnostics / Watercut Fractional Flow plot ] [ Watercut Correlation @model ]

WOR ]