Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


We start with reservoir pressure diffusion outside wellbore:

LaTeX Math Block
anchorrho_dif
alignmentleft
\frac{\partial (\rho \phi)}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

Table. 1. Notations and Definitions

...

LaTeX Math Inline
body--uriencoded--\delta A_%7Byz%7D=\delta y\delta z

...

LaTeX Math Inline
body\delta V = \delta x \delta y \delta z

...

объем элементарной ячейки

...

LaTeX Math Inline
body\rho

...

LaTeX Math Inline
body\phi

...

LaTeX Math Inline
bodyp

...

LaTeX Math Inline
bodym

...

LaTeX Math Inline
bodyk

...

LaTeX Math Inline
body\mu

...

LaTeX Math Inline
body\sigma

...

LaTeX Math Inline
body--uriencoded--\vec%7Bj%7D = \rho \vec%7Bu%7D
LaTeX Math Inline
body--uriencoded--\displaystyle j_%7B\delta A%7D = \frac%7B\delta m%7D%7B\delta t \delta A%7D

...

LaTeX Math Inline
body--uriencoded--\vec %7Bu%7D

...

LaTeX Math Inline
body--uriencoded--\displaystyle c_%7Br%7D = \frac%7B1%7D%7B\Phi%7D\frac%7B\partial \Phi%7D%7B\partial p%7D

...

LaTeX Math Inline
body--uriencoded--\displaystyle c_%7Bf%7D = \frac%7B1%7D%7B\rho%7D \frac%7B\partial \rho%7D%7B\partial p%7D

...

LaTeX Math Inline
body--uriencoded--c_%7Bt%7D = c_%7Br%7D + c_%7Bf%7D

...

LaTeX Math Inline
body\Sigma_k

well-reservoir contact of the 

LaTeX Math Inline
bodyk
-th well

LaTeX Math Inline
body--uriencoded--

...

d %7B\

...

bf \Sigma%7D

normal vector of differential area on the well-reservoir contact, pointing inside wellbore


Then use the following equality:

LaTeX Math Block
anchorrhophi
alignmentleft
d(\rho \, \phi) = \rho \, d \phi + \phi \, d\rho = \rho \, \phi \, \left( \frac{d \phi }{\phi} +  \frac{d \rho }{\rho}  \right) 
= \rho \, \phi \, \left( \frac{1}{\phi} \frac{d \phi}{dp} \, dp +  \frac{1}{\rho} \frac{d \rho}{dp} \, dp  \right) 
= \rho \, \phi \, (c_{\phi} \, dp + c \, dp) = \rho \, \phi \, c_t \, dp

to arrive at:

LaTeX Math Block
anchorS8TNB
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{\partial p}{\partial t} + \nabla \, ( \rho \, {\bf u}) = 0
LaTeX Math Block
anchorqk
alignmentleft
\int_{\Sigma_k} \, {\bf u} \,  d {\bf A} = q_k(t)

where

LaTeX Math Inline
bodyc_t = с_\phi+ c

...

LaTeX Math Inline
body--uriencoded--\delta \Omega = \%7B (x, x+\delta), (y, y+\delta y), (z, z+\delta z) \%7D \in ℝ%5e3

...

LaTeX Math Inline
body\delta V = \delta x \, \delta y \, \delta z

...

LaTeX Math Inline
body--uriencoded--\%7B (\delta \Sigma_x, \, \delta \Sigma_%7Bx+\delta x%7D), \, (\delta \Sigma_y, \, \delta \Sigma_%7By+\delta y%7D), \, (\delta \Sigma_z, \, \delta \Sigma_%7Bz+\delta z%7D) \%7D

...

LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_x) = \delta A(\Sigma_{x+\delta x }) = \delta A_{yz} = \delta y \cdot \delta z
LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_y) = \delta  A(\Sigma_{y+\delta y }) = \delta A_{xz} = \delta x \cdot \delta z
LaTeX Math Block
anchor1
alignmentleft
\delta A(\delta \Sigma_z) = \delta A(\Sigma_{z+\delta z }) = \delta A_{xy} = \delta x \cdot \delta y

Consider the volumetric element 

LaTeX Math Inline
body\delta \Omega
 is filled with porous media with porosity 
LaTeX Math Inline
body\phi(x,y,z)
 saturated by fluid with density 
LaTeX Math Inline
body\rho(x,y,z)
.

The pore volume is going to be 

LaTeX Math Inline
body--uriencoded--\delta V_%7B\phi%7D = \phi \cdot \delta V
 and the fluid mass contained in this volume is 
LaTeX Math Inline
body--uriencoded--\delta m = \rho \cdot \delta V_%7B\phi%7D = \rho \cdot \phi \cdot \delta V
.

The mass flowrate  through any face  

LaTeX Math Inline
body\delta \Sigma
 with area 
LaTeX Math Inline
body\delta A
 is defined as:

LaTeX Math Block
anchor1
alignmentleft
\frac{dm}{dt} \Big|_{\delta \Sigma} = {\bf j} \, {\bf \delta A} 

where

...

LaTeX Math Inline
body--uriencoded--%7B\bf \delta A%7D = \delta A \cdot %7B\bf n%7D

...


Let's assume Darcy flow with constant permeability 

LaTeX Math Inline
body--uriencoded--

...

\displaystyle \frac%7Bdk%7D%7Bdp%7D = 0
and ignore gravity forces:

LaTeX Math Block
anchorqk
alignmentleft
 {\bf u} = \frac{k}{\mu} \nabla \, p

so that diffusion equation becomes

...

normal vector to  elementary area  

LaTeX Math Inline
body\delta A

...

LaTeX Math Inline
body--uriencoded--%7B\bf j%7D = \rho \cdot %7B\bf u%7D

...

LaTeX Math Inline
body--uriencoded--%7B\bf u%7D

...

The total mass balance of the  volumetric element 

LaTeX Math Inline
body\delta \Omega
 honours the mass conservation:

LaTeX Math Block
anchor

...

S8TNB
alignmentleft
\rho \, \phi \, c_t  \cdot \frac{

...

\partial p}{

...

\partial t} + \nabla \, ( k \cdot \frac{\rho}{\mu} \, \nabla  \, p) = 0
LaTeX Math Block
anchor

...

qk
alignmentleft
\frac{

...

k}{

...

\mu} \

...

cdot \int_{\

...

Sigma_k} \

...

,  

...

{

...

\

...

bf \

...

nabla 

...

} 

...

\, p \cdot  d {\bf A} = q_k(t)

Let's express the density via Z-factor:

LaTeX Math Block
anchorWYVS5
alignmentleft
\rho = \frac{M}{RT} \, \frac{p}{Z(p)}\delta A_{yz} +j_y|_{y}\cdot \delta A_{xz} - j_y|_{y+\delta y}\cdot \delta A_{xz} +
j_z|_{z}\cdot \delta A_{xy} - j_z|_{z+\delta z}\cdot \delta A_{xy}  + \delta \dot m_q

where

LaTeX Math Inline
body

\delta \dot m_q

T

fluid temperature
the rate of the mass variation which happens inside the volumetric element 

LaTeX Math Inline
body

\delta \Omega   

M

molar mass of a fluid

LaTeX Math Inline
bodyR

gas constant

and assuming the fluid temperature Dividing the 

LaTeX Math Block Reference
anchormdot
by the volume 
LaTeX Math Inline
body\delta VT
 does not change over time and space during the modelling period:

LaTeX Math Block
anchor

...

S8TNB
alignmentleft

...

 \phi \, 

...

c_t \, \mu  \cdot \frac{p}{\mu \, Z} \cdot \frac{\partial p}{\partial t} + \nabla \, ( k \cdot \frac{p}{\mu \, Z} \, \nabla  \, p) = 0
LaTeX Math Block
anchorqk

or in differential form:

...

alignmentleft
\frac{k}{\

...

mu} 

...

\

...

cdot \

...

int_{\

...

Sigma_k} 

...

\, {\bf \nabla } \, 

...

p \

...

cdot  

...

 

...

d 

...

{\

...

bf A} = q_k(t)

or

LaTeX Math Block
anchor

...

prePZ
alignmentleft
\

...

phi 

...

\

...

, c_t \, 

...

\

...

mu 

...

 

...

 \cdot \frac{\

...

partial \

...

Psi}{\

...

partial 

...

The mass rate generated/consumed inside the volumetric element 

LaTeX Math Inline
body\delta \Omega
 by a finite number of sources can be expressed as:

...

anchor1
alignmentleft

...

which turns 

LaTeX Math Block Reference
anchorprelast
 into:

t} + \nabla \, ( k \cdot \

...

where

...

LaTeX Math Inline
body--uriencoded--q(%7B\bf r%7D)

...

nabla  \, \Psi) = 0
LaTeX Math Block
anchor

...

qk
alignmentleft
\frac{k}{\

...

mu} 

...

\

...

cdot \

...

int_{\

...

Sigma_k} 

...

\, {\bf 

...

\nabla } \, p \cdot   d {\bf 

...

A} = q_k(t)

where

123

LaTeX Math Inline
body--uriencoded--\displaystyle \

frac%7Bdm%7D%7Bdt%7D

Psi(p) =2 \

sum_%7B\alpha%7D j_%7B\alpha%7DA_%7B\alpha%7D = j_x%7C_%7Bx%7D\cdot A_%7Byz%7D - j_x%7C_%7Bx+\delta x%7D\cdot A_%7Byz%7D + ...

Consider the mass flow rate balance  along the 

Рассмотрим приращение массы в элементарном кубе объема 

LaTeX Math Inline
body\delta V
. Предполагаем, что в самой ячейке нет источников, знак минус появляется за счет того, что нормали к противоположным граням кубика противонаправлены.

4

LaTeX Math Inline
body--uriencoded--\displaystyle \frac %7B\partial%7D%7B\partial t%7D%7B\rho \Phi%7D = \frac%7Bj_x%7C_x - j_x%7C_%7Bx+\delta x%7D%7D%7B\delta x%7D + \frac%7Bj_y%7C_y - j_y%7C_%7By+\delta y%7D%7D%7B\delta y%7D + \frac%7Bj_z%7C_z - j_z%7C_%7Bz+\delta z%7D%7D%7B\delta z%7D

Разделим ур-ние (1) на объем ячейки5

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) = - \nabla \cdot \vec j

Ур-ние (2) есть развернутая форма записи ур-ния (3)6

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) + \nabla \cdot \vec j = 0

Классическое уравнение непрерывности7

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D(\rho \Phi) + \nabla \cdot (\rho \vec u) = 0

Вспоминаем определение (4) поля 

LaTeX Math Inline
body--uriencoded--\vec%7Bj%7D
 

8

LaTeX Math Inline
body--uriencoded--\displaystyle \vec u = -\frac%7Bk%7D%7B\mu%7D \vec \nabla p

Феноменологический закон Дарси, связывающий скорость потока с градиентом давления9

, \int_0%5ep \frac%7Bp \, dp%7D%7B\mu(p) \, Z(p)%7D

Pseudo-Pressure


In some practical cases the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can be considered as constant in time which makes  
LaTeX Math Block Reference
anchorprePZ
 a linear differential equation.

But during the early transition times the pressure drop is usually high and the complex 

LaTeX Math Inline
bodyc_t \, \mu
 can not be considered as constant in time which leads to distortion of pressure transient diagnostics at early times.

In this case one can use Pseudo-Time, calculated by means of the bottom-hole pressure

LaTeX Math Inline
body--uriencoded

...

-

...

-

...

Здесь и далее работаем в приближении

  1. процесс изотермический
  2. плотность флюида и пористость породы не зависят от времени явно

...

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial%7D%7B\partial t%7D (\rho \Phi) = \frac%7B\partial%7D%7B\partial p%7D (\rho \Phi)_T \frac%7B\partial p%7D%7B\partial t%7D = (\dot %7B\Phi%7D \rho + \dot %7B\rho%7D \Phi)\frac%7B\partial p%7D%7B\partial t%7D = \rho \Phi (c_%7Br%7D + c_%7Bf%7D)\frac%7B\partial p%7D%7B\partial t%7D

...

Распишем временную производную в ур-нии (7)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \nabla \cdot \left( \rho \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D p \right) =\frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D\rho \cdot \vec%7B\nabla%7Dp + \rho \cdot \nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \nabla \cdot \left(\rho \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7D p \right) =\dot%7B\rho%7D\frac%7Bk%7D%7B\mu%7D (\vec%7B\nabla%7Dp)%5e2 + \rho \cdot \nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \rho \Phi c_%7Bt%7D \frac%7B\partial p%7D%7B\partial t%7D =\rho \left(\nabla \cdot \left( \frac%7Bk%7D%7B\mu%7D \vec%7B\nabla%7Dp \right) + c_%7Bf%7D\frac%7Bk%7D%7B\mu%7D (\vec%7B\nabla%7Dp)%5e2 \right)

...

Перепишем ур-ние (7), используя конечные соотношения в (10) и (8), и определения для 

LaTeX Math Inline
body--uriencoded--c_%7Bt%7D
 (6) и 
LaTeX Math Inline
body--uriencoded--c_%7Bf%7D
 (7)

...

LaTeX Math Inline
body--uriencoded--\displaystyle \Phi(p) c_%7Bt%7D(p) \frac%7B\partial p%7D%7B\partial t%7D =\nabla \cdot \left( \frac%7Bk(p)%7D%7B\mu (p)%7D \vec%7B\nabla%7Dp \right) + c_%7Bf%7D(p)\frac%7Bk(p)%7D%7B\mu (p)%7D (\vec%7B\nabla%7Dp)%5e2

Классическая запись уравнения диффузии в приближении изотермического процесса и независимости от времени плотности флюида и пористости породы.

p_%7BBHP%7D(t)
:

LaTeX Math Block
anchortau
alignmentleft
\tau(t) = \int_0^t \frac{dt}{\mu (p_{BHP} ) \, c_t (p_{BHP}) } \, , \ \  p_{BHP} = p_{BHP}(t) 

to correct early-time transient  behaviour which turn equation

LaTeX Math Block Reference
anchorprePZ
 into:

LaTeX Math Block
anchorDD3EH
alignmentleft
\phi  \cdot \frac{\partial \Psi}{\partial \tau} + \nabla \, ( k \cdot \nabla  \, \Psi) = 0

...



See also

...

Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Pressure Diffusion / Pressure Diffusion @model / SinglePseudo-phase linear pressure diffusion @model