Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation



In many practical cases the Radial Flow Pressure Diffusion is evolving towards pressure stabilization and can be efficiently analyzed using the pseudo-steady state flow model.


Inputs & Outputs



InputsOutputs

LaTeX Math Inline
bodyq_t

total sandface rate

LaTeX Math Inline
bodyp(t,r)

reservoir pressure

LaTeX Math Inline
body{p_i}

initial formation pressure

LaTeX Math Inline
bodyp_{wf}(t)

well bottomhole pressure

LaTeX Math Inline
body\sigma

transmissibility,

LaTeX Math Inline
body\sigma = \frac{k \, h}{\mu}



LaTeX Math Inline
body\chi

pressure diffusivity,

LaTeX Math Inline
body\chi = \frac{k}{\mu} \, \frac{1}{\phi \, c_t}



LaTeX Math Inline
bodyS

skin-factor

LaTeX Math Inline
bodyr_w

wellbore radius

LaTeX Math Inline
bodyr_e

drainage radius


Expand
titleDetailing


LaTeX Math Inline
bodyk

absolute permeability

LaTeX Math Inline
bodyc_t

total compressibility,

LaTeX Math Inline
bodyc_t = c_r + c

LaTeX Math Inline
bodyh

effective thickness

LaTeX Math Inline
body{c_r}

pore compressibility

LaTeX Math Inline
body\mu

dynamic fluid viscosity

LaTeX Math Inline
bodyc

fluid compressibility

LaTeX Math Inline
body{\phi}

porosity




Physical Model


Radial fluid flowHomogenous reservoirFinite reservoir flow boundarySlightly compressible fluid flowConstant rateConstant skin

LaTeX Math Inline
bodyp(t, {\bf r})

LaTeX Math Inline
body{\bf r} \in ℝ^2 = \{ x, y\}

LaTeX Math Inline
bodyM(r, p)=M =\rm const

LaTeX Math Inline
body\phi(r, p)=\phi =\rm const

LaTeX Math Inline
bodyh(r)=h =\rm const

LaTeX Math Inline
bodyc_r(r)=c_r =\rm const

LaTeX Math Inline
bodyr_w \leq r \leq r_e < \infty

LaTeX Math Inline
bodyc_t(r,p) = \rm const

LaTeX Math Inline
bodyq_t = \rm const

LaTeX Math Inline
bodyS = \rm const


Mathematical Model



Expand
titleDefinition



LaTeX Math Block
anchor3MUX9
alignmentleft
r_{wf} < r \leq r_e




LaTeX Math Block
anchor52112
alignmentleft
\frac{\partial p}{\partial t}= \chi \left[ \frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right]



LaTeX Math Block
anchor3MUX9
alignmentleft
\left[ \frac{\partial p}{\partial r} \right]_{r=r_e} = 0



LaTeX Math Block
anchorEM415
alignmentleft
\left[ r\frac{\partial p(t,r)}{\partial r} \right]_{r = r_w} = \frac{q_t}{2 \pi \sigma}



LaTeX Math Block
anchor3MUX9
alignmentleft
p_{wf}(t)= p(t, r_w) - S \cdot \left[ r \frac{\partial p(t,r)}{\partial r} \right]_{r=r_w} = p(t, r_w) - \frac{q_t}{2 \pi \sigma} S 




Expand
titleSolution



LaTeX Math Block
anchorpwf
alignmentleft
p(t,r) = p_i - \frac{{\rm w \,}  q_t }{V_e \, \phi \, c_t} \, t + \frac{{\rm w \,} q_t }{4\pi \sigma} \left[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \right] 
 , \quad r_{wf} < r \leq r_e, 
\quad {\rm w }= 1 - \frac{r_w^2}{r_e^2}




LaTeX Math Block
anchorpwf
alignmentleft
p_e(t) = p_i - \frac{{\rm w \,} q_t}{V_e \phi c_t}t





LaTeX Math Block
anchorpwf
alignmentleft
p_{wf}(t) = p_e(t) - \frac{q_t}{2 \pi \sigma} \, \left[ {\rm w\, } \ln \frac{r_e}{r_w}  + 0.5 + S \right]




Expand
titleDerivation



Approximations




LaTeX Math Block
anchor1
alignmentleft
{\rm w} = 1 - \frac{r_w^2}{r_e^2} \approx 1



LaTeX Math Block
anchorpwf
alignmentleft
p(t,r) \approx p_i - \frac{q_t}{V_e \, \phi \, c_t} \, t + \frac{q_t}{4\pi \sigma} \bigg[ 2 \ln \frac{r}{r_e} - \frac{r^2}{r_e^2} + 1 \bigg] 
 , \quad r_{wf} < r \leq r_e




LaTeX Math Block
anchorpwf
alignmentleft
p_{wf}(t) \approx p_e(t) - \frac{q_t}{2 \pi \sigma} \, \left[  \ln \frac{r_e}{r_w}  + 0.5 + S \right]



LaTeX Math Block
anchorpwf
alignmentleft
p_e(t) \approx p_i - \frac{q_t}{V_e \phi c_t}t



Applications



Equation  

LaTeX Math Block Reference
anchorpwf
 shows how the basic diffusion model parameters impact the relation between drawdown 
LaTeX Math Inline
body\Delta p = p_i - p_{wf}
 and total sandface flowrate 
LaTeX Math Inline
bodyq_t
 and plays important methodological role as they are used in many algorithms and express-methods of Pressure Testing.



Expand
titleProductivity Index Analysis


The Total Sandface Productivity Index for low-compressibility fluid and low-compressibility rocks  does not depend on formation pressure, bottomhole pressure and the flowrate and can be expressed as:

LaTeX Math Block
anchorJ
alignmentleft
J_t = \frac{q_t}{p_e(t) - p_{wf}(t)} =\frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} + 0.5 +S} = {\rm const}


See Also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Dynamics / Radial fluid flow / Pressure diffusion / Pressure Diffusion @model / Radial Flow Pressure Diffusion @model

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Well Testing / Pressure Testing

Well & Reservoir Surveillance ]