Page tree

@wikipedia


(1) \frac{D {\bf u}}{Dt} = \frac{1}{\rho} \nabla {\bf \sigma} + {\bf g}

where

( t, {\bf r} )

time and spatial variables

{\bf u}(t, {\bf r})

velocity of  Continuum Body 

\rho(t, {\bf r})

density of  Continuum Body 

\sigma(t, {\bf r})

stress tensor of Continuum Body 

{\bf g}(t, {\bf r})

sum of all body forces exerted on Continuum Body 

{\bf f}_{\rm cnt}(t, {\bf r})

volumetric density of all contact forces exerted on Continuum Body

\frac{D}{Dt} = \frac{\partial }{\partial t} + {\bf u} \nabla

Material derivative of the Continuum Body motion


In Fluid Mechanics it's known as Navier–Stokes equation and based on specific view of the stress tensor.

(2) \sigma = - p - \mu \cdot \left[ \Delta {\bf u} + \frac{1}{3} {\bf u} \nabla {\bf u} \right]


See also


Physics / Mechanics / Continuum mechanics 

 Continuum Body  ] [ Navier–Stokes equation ]

  • No labels