Page tree

@wikipedia


Ideally balanced water + dead oil 1D waterflood model without gravity and capillary effects. 

(1) \frac{\partial s}{\partial t} + \frac{q}{\phi \, \Sigma} \cdot \frac{\partial f}{\partial x} = 0
(2) s(t=0,x) = 0
(3) s(t,0) = 1

where

\displaystyle s= E_D = \frac{s_w - s_{wi}}{1-s_{wi}-s_{or}}

water → oil displacement efficiency

q

sandface injection rate, assumed equal to sandface liquid production rate

\phi(x)

reservoir porosity

\Sigma(x) = h \, D

cross-section area available for flow

h(x)

reservoir thickness

D(x)

reservoir width = reservoir length transversal to flow

\displaystyle f = \frac{1}{1+M_{ro}/M_{rw}}

in-situ fractional flow function


M_{ro}= k_{ro}(s_o)/\mu_o
relative oil mobility

M_{wo} = k_{rw}(s_w)/\mu_w

relative water mobility


Approximations



In many practical applications (for example, laboratory SCAL tests and reservoir proxy-modeling) one can assume constant porosity and reservoir width: 

(4) \frac{\partial s}{\partial t_D} +\frac{\partial f}{\partial x_D} = 0
(5) s(t=0,x) = 0
(6) s(t,0) = 1

where

\displaystyle t_D = \frac{q \, t}{V_\phi }

dimensionless time

\displaystyle x_D = \frac{x}{L}

dimensionless distance between injector and producer

L

reservoir length along x-axis

V_{\phi m}= (1-s_{wi}-s_{orw}) \cdot \phi \cdot h \cdot D \cdot L

mobile reservoir pore volume


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model / Reservoir Flow Model (RFM)

Production / Subsurface Production / Reserves Depletion /  Recovery Methods ]


  • No labels