Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 53 Next »

Motivation


The most accurate way to simulate Gas Cap expansion (or shrinkage) is full-field 3D Dynamic Flow Model where Gas Cap expansion is treated as one of the fluid phases and accounts of geological heterogeneities, gas fluid properties, relperm properties and heat exchange with surrounding rocks.

Unfortunately, in many practical cases the detailed information on the Gas Cap is not available.

Besides many practical applications require only knowledge of one element of the Gas Cap expansion process – a pressure support and not the sweep in the invaded zones. 

This allows building a Gas Cap Drive @model using analytical methods.


Inputs & Outputs


InputsOutputs

p(t)

field-average formation pressure at time moment t

Q^{\downarrow}_{GC}(t)

Cumulative subsurface gas influx from Gas Cap

p_i

Initial formation pressure

\displaystyle q^{\downarrow}_{GC}(t) = \frac{dQ^{\downarrow}_{GC}}{dt}


Subsurface
gas flowrate from
Gas Cap

V_{gi}


Initial Gas Cap volume



Z(p)

Gas compressibility factor



Physical Model


Isothermal expansionUniform pressure depletion in Gas Cap

T = \rm const

p_{GC}(t) = p(t)



Mathematical Model



(1) Q^{\downarrow}_{GC}(t) = V_{gi} - V_{GC}(t) = V_{gi} \cdot \left( \frac{Z}{p} \cdot \frac{p_i}{Z_i} - 1 \right)
(2) q^{\downarrow}_{GC}(t) = \frac{dQ_{GC}}{dt}


Proxy Models



Low pressure depletion \displaystyle \frac{\delta p(t)}{p_i} \ll 1

(3) Q^{\downarrow}_{GC}(t) = V_{gi} \cdot \frac{\delta p(t)}{p_i}
(4) q^{\downarrow}_{GC}(t) = \frac{V_{gi}}{p_i}\cdot \frac{d p}{dt}

When pressure depletion is not strong \displaystyle \frac{\delta p(t)}{p_i} \ll 1 then compressibility factor maybe considered as relatively constant  Z = \rm const which leads to:

(5) Q^{\downarrow}_{GC}(t) = V_{gi} \cdot \left( \frac{Z}{p} \cdot \frac{p_i}{Z_i} - 1 \right) = V_{gi} \cdot \left( \frac{p_i}{p} - 1 \right) = V_{gi} \cdot \left( \frac{p_i}{p_i - \delta p} - 1 \right) = V_{gi} \cdot \left( \frac{1}{1 - \frac{\delta p}{p_i}} - 1 \right) \approx V_{gi} \cdot \left( 1 + \frac{\delta p}{p_i} - 1 \right) = V_{gi} \cdot \frac{\delta p(t)}{p_i)}




 

See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Gas Cap Drive

Depletion ] [ Saturated oil reservoir ] 


  • No labels