Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »


Let's start with Pressure Profile in Homogeneous Steady-State Pipe Flow @model:

(1) \left[\rho(p) - j_m^2 \cdot c(p) \right] \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l) - \frac{ j_m^2 }{2 d} \cdot f(p)
(2) p(l=0) = p_0


and assume constant pipe inclination:

(3) \theta(l) = \theta = \rm const

Let's define constant number: 

(4) G = g \cdot \cos \theta = \rm const

and rewrite the equation  (1) as:

(5) \frac{\left[\rho(p) - j_m^2 \cdot c(p) \right] \, dp}{\rho^2(p) \, G - \frac{ j_m^2 }{2 d} \cdot f(p)} = dl

The integration of the left side of  (5) leads to:

(6) L = \int_{\rho_0}^{\rho} \frac{1/c- j_m^2 / \rho}{G \, \rho^2 - F} \, d \rho =\int_{\rho_0}^{\rho} \frac{\rho \, dp}{G \, \rho^2 - F} -\frac{j_m^2}{2} \, \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}

where

\displaystyle F = \frac{ j_m^2 }{2 d} \cdot f(p)

See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Steady-State Pipe Flow @model / Pressure Profile in G-Proxy Pipe Flow @model


  • No labels