Page tree


Let's start with Pressure Profile in Homogeneous Steady-State Pipe Flow @model:

(1) \left[\rho(p) - j_m^2 \cdot c(p) \right] \frac{dp}{dl} = \rho^2(p) \, g \, \cos \theta(l) - \frac{ j_m^2 }{2 d} \cdot f(p)
(2) p(l=0) = p_0


and assume constant pipe inclination:

(3) \theta(l) = \theta = \rm const

Let's define constant number: 

(4) G = g \cdot \cos \theta = \rm const

and rewrite the equation  (1) as:

(5) \frac{\left[\rho(p) - j_m^2 \cdot c(p) \right] \, dp}{\rho^2(p) \, G - \frac{ j_m^2 }{2 d} \cdot f(p)} = dl

The integration of the left side of  (5) with the boundary condition  (2) leads to:

(6) L =\int_{p_0}^{p} \frac{ \rho(p) - j_m^2 \, c(p) }{G \, \rho^2(p) - F(\rho(p))} \, dp

where

\displaystyle F(\rho) = \frac{ j_m^2 }{2 d} \cdot f(\rho)

This can be further re-written as:

(7) L = \int_{p_0}^{p} \frac{ \rho \, dp}{G \, \rho^2 - F(\rho)} - j_m^2 \cdot \int_{\rho_0}^{\rho} \frac{1}{\rho} \, \frac{d \rho}{G \, \rho^2 - F(\rho)}

or

(8) L =\int_{\rho_0}^{\rho} \frac{ 1/c(\rho) - j_m^2/\rho }{G \, \rho^2 - F(\rho)} \, d\rho

See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Steady-State Pipe Flow @model / Pressure Profile in G-Proxy Pipe Flow @model


  • No labels