Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Геотермическое поле земли

Геотермическое распределение температуры 

Show If
grouparax


Panel
bgColorpapayawhip
titleARAX

J. H. Davis, D. R. Davis, Earth’s surface heat flux - London -2010.pdf

Georgios Florides, Soteris Kalogirou, Annual ground temperature measurements at various - Cyprus - 2014.pdf

Геотермическое поле земли

Show If
groupeditors
Panel
bgColor#FFDFDD
Expand
titleEditor
LaTeX Math Inline
bodyT_g(x,y,z)
 в массиве пород данного региона являестя стационарным и определяется региональным тепловым потоком из недр земли, условием теплообмена на поверхности и теплопроводностью пород.

В отсутствии латерального теплового потока и сильной анизотропии теплопроводности, это распределение может быть записано через вертикальный геотермический градиент, следующим образом (см. вывод):

LaTeX Math Block
anchorT_g
alignmentleft
T_g(x,y,z) = T_{ref}(x,y) + \int_{z_{ref}}^z G_T(x,y,z) dz

где 

LaTeX Math Block
anchorG_T
alignmentleft
G_T(z) =\frac{d T_g}{d z}= \frac{j_z}{\lambda_e}

вертикальная проекция регионального геотермического градиента

LaTeX Math Inline
bodyj_z(x,y)

распределение вертикальной проекции регионального теплового потока из недр Земли на заданной глубине 

LaTeX Math Inline
bodyz
(обычно
LaTeX Math Inline
bodyj_e = 25 \div 55 \ mW/m^2
)

LaTeX Math Inline
body\lambda_e( x,y,z)

профиль теплопроводности в массиве горных пород

LaTeX Math Inline
bodyz_{ref}(x,y)

опорная глубина, для которой известна стационарная температура пород

LaTeX Math Inline
bodyT_{ref}(x,y) = T_g(x,y,z_{ref})

значение опорной температуры AnchorT_g_deductionT_g_deduction Expand
titleОбщий подход к моделированию геотермического поля
В общем случае, геотермическое распределение температуры 
LaTeX Math Inline
bodyT_g(x,y,z)
 в массиве пород данного региона является решением стационарного уравнения теплопроводности:
LaTeX Math Block
anchornablaT
alignmentleft
\nabla  {\bf j} = 0  \quad \rightarrow \quad \partial_{\alpha} \, j_{\alpha} = 0

где

LaTeX Math Block
anchorgradT
alignmentleft
j_{\alpha}  = \lambda_{\, \alpha  \beta} \: \partial_{\beta} T_g
плотность теплового потока Земли

LaTeX Math Inline
body\hat \lambda = \lambda_{\, \alpha \, \beta}

тензор теплопроводности

Как правило, теплопроводность имеет небольшую анизотропию вдоль и поперек горизонта залегания и в главных осях имеет вид:

LaTeX Math Block
anchor1
alignmentleft
\hat \lambda= \begin{pmatrix} 

\lambda_{\perp} & 0 & 0 \\ 

0 & \lambda_{\perp} & 0 \\

0 & 0 & \lambda_{||}

\end{pmatrix}

где

LaTeX Math Inline
body\lambda_{\perp}

теплопроводность пород вдоль горизонта залегания

LaTeX Math Inline
body\lambda_{||}

теплопроводность пород перпендикулярно горизонту залегания

При анализе небольших по площади участков (десятки километров) можно пренебречь влиянием латерального теплового потока и анизотропией тензора теплопроводности и тогда, геотермическое распределение температуры в регионе можно записать как

LaTeX Math Block
anchornablaT
alignmentleft
\partial  j_z = 0  

откуда

LaTeX Math Block
anchordzT
alignmentleft
\lambda_z(x,y,z) \, \partial_z \, T_g = j_z(x,y)

где

LaTeX Math Inline
bodyj_z(x,y)
региональное распределение вертикально компоненты плотности теплового потока Земли.

Интегрируя уравнение

LaTeX Math Block Reference
anchordzT
получим уравнение
LaTeX Math Block Reference
anchorT_g
.

Условия теплообмена на поверхности задаются опорной глубиной и температурой.

Понятие опорной глубины и температуры связано с тем, что верхний слой грунта не является стационарным во времени и подвержен дневным и сезонным колебаниям температуры, вызванным переменным влиянием солнца и атмосферных явлений.

Как правило, эти влияния проникают не глубже 20 – 30 м. 

Эта отметка

LaTeX Math Inline
bodyz_{n_0}(x,y)
 называется глубиной залегания нейтрального слоя, а его температура
LaTeX Math Inline
bodyT_{n_0} = T_g(x,y,z_{n_0})
 называется температурой нейтрального слоя.

Именно ее и выбирают в качестве опорной для расчета температурного поля ниже опорной отметки.

Нейтральный слой

Математическая модель температуры грунта на произвольной глубине 

LaTeX Math Inline
body z
 и в произвольный момент времени 
LaTeX Math Inline
bodyt
, от момента начала цикла температурных колебаний, может быть решена численно.

Однако полезность этих расчетов на коротких временах (сутки и даже месяцы) ограничивается спонтанностью входящих в модель параметров:

  • волатильность степени солнечного потока в данном регионе в зависимости от облачности и степени поглощения/отражения поверхности земли
     
  • волатильности атмосферных явлений (ветер и осадки)
     
  • волатильности активности грунтовых вод

Для практических целей моделирования температуры пород выше нейтрального слоя вполне достаточно феноменологической корреляции [Kasuda, 1965]:

LaTeX Math Block
anchorT_z
alignmentleft
T(t, z) = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{srf}) + T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg] \, \cos \bigg[  \, 2 \pi \frac{t - t_{min}}{\delta_T} + (z_{srf} -z) \sqrt {\frac{\pi}{a_e \, \delta_T}} \, \bigg]

где

LaTeX Math Inline
bodyz_{srf}

абсолютная отметка поверхности земли (обычно полагается

LaTeX Math Inline
bodyz_{ref} =0
)

LaTeX Math Inline
bodyT_{srf}

средняя температура пород на поверхности (обычно по метеосводкам региона)

LaTeX Math Inline
bodyT_A

среднее значение амплитуды циклических колебаний на поверхности земли (обычно по метеосводкам региона)

LaTeX Math Inline
body\delta_T

период циклических колебаний температуры (обычно

LaTeX Math Inline
body\delta t = 1 \, {\rm год}
)

LaTeX Math Inline
bodyt_{min}

смещение от начала цикла при котором отклонение температуры от среднего

LaTeX Math Inline
bodyT_{ref}
минимально

LaTeX Math Inline
bodya_e = \frac{\lambda_e}{\rho_e \, c_e}

температуропроводность грунта

LaTeX Math Inline
body\rho_e

плотность грунта

LaTeX Unit
bodyc_e

удельная объемная теплоемкость грунта при постоянном давлении

Волатильность теплообмена с атмосферой зашифрована в параметры   

LaTeX Math Inline
bodyT_{srf}
 и 
LaTeX Math Inline
bodyT_A
 и определяется по региональным метеосводкам.

Формула

LaTeX Math Block Reference
anchorT_z
 применима как к сезонным, так и дневным колебаниям температуры, но с учетом вышесказанных оговорок о волатильности параметров теплообмена на коротких временах наблюдений.

По этой же формуле можно оценить глубину залегания нейтрального слоя (по пороговому значению погрешности температурных измерений):

LaTeX Math Block
anchorH_0
alignmentleft
z_{n_0} = z_{srf} + \sqrt{\frac{a_e \, \delta_T }{\pi}} \, \ln \frac{T_A }{\delta T_{err} }

где 

LaTeX Math Inline
body\delta T_{err}

измерительная погрешность термометра (обычно

LaTeX Math Inline
body\delta T_{err} = 0.1 \, ^\circ \rm C
)

Expand
title Вывод формулы глубины залегания нейтрального слоя

Для вывода формулы

LaTeX Math Block Reference
anchorH_0
запишем значение максимальной и минимальной температуры по формуле  
LaTeX Math Block Reference
anchorT_z
 в зависимости от момента времени на хронологической шкале цикла:

LaTeX Math Block
anchorEK0CC
alignmentleft
T_{max} = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{ref}) + T_A \, \exp \bigg[ \, {(z_{ref}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]
LaTeX Math Block
anchorKB9Q0
alignmentleft
T_{min} = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{ref}) - T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]

откуда получается  размах температурных колебаний на глубине  

LaTeX Math Inline
bodyz
:

LaTeX Math Block
anchorRKEWH
alignmentleft
\delta T_{max} = T_{max} - T_{min} =  2 T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]
Если метрологическая погрешность термометра составляет 
LaTeX Math Inline
body\delta T_{err}
, то он в состоянии зарегистровать колебания свыше 
LaTeX Math Inline
body\delta T_{max} = 2 \, \delta T_{err}
 то есть:
LaTeX Math Block
anchorVV54D
alignmentleft
\delta T_{err} = T_A \, \exp \bigg[ \, {(z_{srf}-z_0}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]

 откуда и вытекает формула 

LaTeX Math Block Reference
anchorH_0
.

Геотерма скважины

Геотермическое распределение температуры 

LaTeX Math Inline
bodyT_g(l)
 вдоль траектории данной скважины называется геотермой данной скважины и являестя как функцией геотермического поля региона, так и траектории данной скважины и задается следующей моделью:

LaTeX Math Block
anchor1
alignmentleft
T_g(l) = T_{n_0}(x,y) + \int_{z_{n_0}}^{z(l)} G_T(x,y,z) dz = T_{n_0}(x,y) + \int_{l_{n_0}}^l G_T(x,y,z(l)) \cos \theta dl 

где 

LaTeX Math Inline
bodyl_{n_0} = l(z_{n_0})

отметка нейтрального слоя вдоль траектории скважины

(обычно

LaTeX Math Inline
bodyl_{n_0} = z_{n_0}
так как начальные участки скважин не имеют сильного отклонения от вертикали)

В регионах, где  нейтральный слой остается постоянным по площади

LaTeX Math Inline
bodyT_{n_0}(x,y) = T_{n_0}= \rm const
, а геотермический градиент остается постоянным по площади по глубине 
LaTeX Math Inline
bodyG_T(x,y,z) = G_T = \rm const
, геотермическое распределение температуры в породах принимает простой вид:

LaTeX Math Block
anchorT_g_const
alignmentleft
T_g(l) = T_{n_0} + (z(l) - z_{n_0})  \, G_T \, \sin \theta(l) 

Однако в большом количестве практических случаев это не так и применение среднего по всему разрезу значения геотермического градиента для оценки геотермического распределения температур по формуле

LaTeX Math Block Reference
anchorT_g_const
может привести к значительным погрешностям.

Наиболее популярные причины отклонения геотермического профиля от

LaTeX Math Block Reference
anchorT_g_const
 являются:
 

большой контраст теплопроводности по горизонтам
латеральные потоки флюида (как секулярные так и возникшие в процессе разработки месторождений)
близкое расположение активного разлома

к котором следует еще добавить техногенные  явления в процессе геотермических исследований:

действующие перетоки в исследуемой скважине 
  • недостаточный срок стабилизации температуры после останова скважины для геотермических исследований
  • Наиболее популярными причинами дрейфа геотермы или е отдельных участков  по площади являются:
     

  • переменный по площади профиль теплопроводности пластов (вызванный особенностями распределения фаций и вертикальными разломами)
     
  • вертикальные перетоки в разломах и скважинах 
  • переменный тепловой поток Земли вызванный конвективными ячейками в мантии  
     
  • переменные условия теплообмена на поверхности земли (например суша-вода)