Page tree

@wikipedia 

Motivation


In some specific subsurface applications which require the knowledge of subsurface temperature distributions the assumption of the Constant Areal Geothermal Temperature Profile is not valid and the problem requires a proper 3D modelling solution.


Outputs

T_G(t, {\bf r})

G_T({\bf r})

Geothermal Temperature Gradient


Inputs

t

Local Calendar Time

{\bf r}

Position vector

z(l)

{\bf j}(x,y, z = z_{ref})

Earth's Heat Flux at some reference depth  z = z_{ref} as function of  (x, \, y)

q({\bf r})

Volumetric density of heat sources distributed throughout the subsurface rock volume

T_s(t, x, y)

Surface temperature based on weather reports

\lambda_e({\bf r})

Subsurface Thermal Conductivity profile as function of position vector

a_{e}({\bf r})

Subsurface Thermal diffusivity profile as function of position vector

where

l

Measured Depth of wellbore trajectory with reference to Earth's surface ( l=0)

z_s = z(l=0)

TVDss of the Earth's surface in a given location. In case the Earth's surface is at sea level then  z_s = 0


Assumptions




Equations

(1) \rho_e \, c_e \frac{\partial T_G}{\partial t} + \nabla \left( \lambda_e \nabla T_G \right) = q({\bf r})
(2) T_G(t, x, y, z = z_s) = T_s(t, x, y)
(3) \Big[ \lambda_e \nabla T_G \Big]_{z=z_{ref}} = {\bf j}(x,y, z = z_{ref})
(4) G_T({\bf r}) = \frac{j_z({\bf r})}{\lambda_e({\bf r})}

See Also


Geology / Geothermal Temperature Field

Constant Areal Geothermal Temperature Profile @model ] [ Geothermal Temperature Gradient ]


References