Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • producing well W1 with total sandface flowrate 
    LaTeX Math Inline
    bodyq_1(t)>0
     and BHP 
    LaTeX Math Inline
    bodyp_1(t)>0
    , draining the reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 1}
     

  • water injecting well W20 with total sandface flowrate 
    LaTeX Math Inline
    bodyq_20(t) <0
    , supporting pressure in reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 20}
     which includes the drainage volume 
    LaTeX Math Inline
    bodyV_{\phi, 1}
     of producer W1 and potentially other producers. 


The drainage volume difference

LaTeX Math Inline
body\delta V_{\phi} = V_{\phi, 20} - V_{\phi, 1} >0
 may be related to the fact that water injection W2 is shared between
LaTeX Math Inline
bodyV_{\phi, 1}
 and another reservoir  or with another producer. 

...

The bottom-hole pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_20
 in injector W20:

LaTeX Math Block
anchorCase1
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

...

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_2
value.

LaTeX Math Inline
bodyp_{u,\rm 2101}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W20


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyq_1 = \rm const
 and varying injection rate at injector W2 
LaTeX Math Inline
bodyq_2(t)
:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 2101}(t-\tau) dq_20(\tau) = p_i - \int_0^t p_{u,\rm 2101}(t-\tau) dq_20(\tau)

Consider a step-change in injector's W20 flowrate 

LaTeX Math Inline
body \delta q_20
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as: 
LaTeX Math Inline
bodydq_20 (\tau) = \delta q_2 0 \cdot \delta(\tau) \, d\tau
.

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchor1
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q_20 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 2101}(t) \cdot  \delta q_20

which leads to 

LaTeX Math Block Reference
anchorCase1
.


...

Assume that the flowrate in producer W1 is being automatically adjusted by

LaTeX Math Inline
body\delta q_1(t)
 to compensate the bottom-hole pressure variation 
LaTeX Math Inline
body\delta p_1(t)
in response to the  total sandface flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W20 so that bottom-hole pressure in producer W1 stays constant at all times
LaTeX Math Inline
body\delta p_1(t) = \delta p_1 = \rm const
. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response 

LaTeX Math Inline
body\delta q_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_20
 in injector W20 is going to be:

LaTeX Math Block
anchorCase2
alignmentleft
\delta q_1(t) = - \frac{\dot p_{u,\rm 2101}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_20

where

LaTeX Math Inline
bodyt

time since injector's W20 rate has changed by 

LaTeX Math Inline
body\delta q_20
.

LaTeX Math Inline
body\dot p_{u,\rm 2101}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W20

LaTeX Math Inline
body\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 2101}(t-\tau) dq_20(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

LaTeX Math Block
anchor1
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 2101}(t-\tau) dq_20(\tau) \right)^{\cdot} = 0


LaTeX Math Block
anchor1
alignmentleft
p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = - p_{u,\rm 2101}(0) \cdot q_20(t) -  \int_0^t \dot p_{u,\rm 2101}(t-\tau) dq_20(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm 11}(0) = 0, \, p_{u,\rm 2101}(0) = 0
which leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = -  \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau) 

Consider a step-change in producer's W1 flowrate 

LaTeX Math Inline
body \delta q_1
and injector's W20 flowrate 
LaTeX Math Inline
body \delta q_20
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau
 and  .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and 

LaTeX Math Inline
bodydq_20(\tau) = \delta q_2 0 \cdot \delta(\tau) \, d\tau
. Substituting this to 
LaTeX Math Block Reference
anchorCase2_PSS_p11_temp
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta q_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 2101}(t-\tau) \delta q_20 \cdot \delta(\tau) \,  d\tau 


LaTeX Math Block
anchor1
alignmentleft
 \dot p_{u,\rm 11}(t)  \delta q_1   = -  \dot p_{u,\rm 2101}(t) \delta q_20  

which leads to 

LaTeX Math Block Reference
anchorCase2
.


...

For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,20} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta q_1 / \delta q_20
is getting stabilised over time as:

LaTeX Math Block
anchorCase2_PSS
alignmentleft
\delta q_1 / \delta q_20 = - f_{21} = - \frac{V_{\phi, 1}}{ V_{\phi, 20}} = \rm const

The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider

LaTeX Math Block Reference
anchorCase2_PSS
 as constant in time.


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,20} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 2101}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,2}}


where

LaTeX Math Inline
bodyc_t

average drain-area  total compressibility of formation within  

LaTeX Math Inline
bodyV_{\phi,1}
 which is jointly drained by  producer W1 and injector W20 

Substituting 

LaTeX Math Block Reference
anchorCase2_PSS_p11
 and 
LaTeX Math Block Reference
anchorCase2_PSS_p21
 in 
LaTeX Math Block Reference
anchorCase2
 one arrives to
LaTeX Math Block Reference
anchorCase2_PSS
.



In case injector W20 supports only one producer W1 , then both wells drain the same volume and 

LaTeX Math Inline
bodyV_{\phi, 20} = V_{\phi, 1}
 so that 
LaTeX Math Block Reference
anchorCase2_PSS
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\delta q_1 = -\delta q_20

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W20.


In case injector W20 supports many producers {W1 .. WN } then all injection shares towards producers are going to sum up to a unit value:

...