Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Consider a well-reservoir system consisting of:

  • producing well W1 draining the reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 1}
  • water injecting well W2 supporting pressure in reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 2}
     which includes the drainage volume 
    LaTeX Math Inline
    bodyV_{\phi, 1}
     of producer W1 and potentially other producers. 

The drainage volume difference

LaTeX Math Inline
body\delta V_{\phi} = V_{\phi, 2} - V_{\phi, 1} >0
 may be related to the fact that water injection W2 is shared between
LaTeX Math Inline
bodyV_{\phi, 1}
 and another reservoir  or with another producer. 

Case #1 –  Constant flowrate production: 
LaTeX Math Inline
bodyq_1 = \rm const >0


The bottom-hole pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2:

LaTeX Math Block
anchorCase1
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

where

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_2
value.

LaTeX Math Inline
bodyp_{u,\rm 21}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W2


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyq_1 = \rm const
 and varying injection rate at injector W2 
LaTeX Math Inline
bodyq_2(t)
:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = p_i - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in injector's W2 flowrate 

LaTeX Math Inline
body \delta q_2
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as: 
LaTeX Math Inline
bodydq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau
.

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q_2 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 21}(t) \cdot  \delta q_2

which leads to 

LaTeX Math Block Reference
anchorCase1
.



Case #2 – Constant BHP
LaTeX Math Inline
bodyp_1 = \rm const


Assume that the flowrate 

LaTeX Math Inline
body\delta q_1(t)
in producer W1 is being adjusted to compensate the bottom-hole pressure variation 
LaTeX Math Inline
body\delta p_1(t)
in response to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2 so that bottom-hole pressure in producer W1 stays constant at all times
LaTeX Math Inline
body\delta p_1(t) = \delta p_1 = \rm const
.

In this case, flowrate response 

LaTeX Math Inline
body\delta q_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2 is going to be:

LaTeX Math Block
anchorCase2
alignmentleft
\delta q_1(t) = - \frac{\dot p_{u,\rm 21}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_2

where

LaTeX Math Inline
bodyt

time since injector's W2 rate has changed by 

LaTeX Math Inline
body\delta q_2
.

LaTeX Math Inline
body\dot p_{u,\rm 21}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W2

LaTeX Math Inline
body\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = \rm const

The time derivative is going to be zero as the bottom-hole pressure in producer W1 stays constant at all times:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) \right)^{\cdot} = 0


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = - p_{u,\rm 21}(0) \cdot q_2(t) -  \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm 11}(0) = 0, \, p_{u,\rm 21}(0) = 0
which leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = -  \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau) 

Consider a step-change in producer's W1 flowrate 

LaTeX Math Inline
body \delta q_1
and injector's W2 flowrate 
LaTeX Math Inline
body \delta q_2
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau
 and 
LaTeX Math Inline
bodydq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau
. Substituting this to 
LaTeX Math Block Reference
anchorCase2_PSS_p11_temp
 leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta q_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 21}(t-\tau) \delta q_2 \cdot \delta(\tau) \,  d\tau 


LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
 \dot p_{u,\rm 11}(t)  \delta q_1   = -  \dot p_{u,\rm 21}(t) \delta q_2  

which leads to 

LaTeX Math Block Reference
anchorCase2
.



For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta q_1 / \delta q_2
is getting stabilised over time as:

LaTeX Math Block
anchorCase2_PSS
alignmentleft
\delta q_1 / \delta q_2 = f_{21} = \frac{c_{t,2} V_{\phi, 2}}{c_{t,1} V_{\phi, 1}} = \rm const




Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_{t,1} V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 21}(t \rightarrow \infty) \rightarrow \frac{t}{c_{t,2} V_{\phi,2}}


where

LaTeX Math Inline
bodyc_{t,1}

average drain-area  total compressibility of formation around producer W1

LaTeX Math Inline
bodyc_{t,2}

average drain-area  total compressibility of formation around injector W2

Substituting 

LaTeX Math Block Reference
displaytextCase2_PSS_p11
 and 
LaTeX Math Block Reference
displaytextCase2_PSS_p21
 in 
LaTeX Math Block Reference
displaytextCase2
 one arrives to
LaTeX Math Block Reference
displaytextCase2_PSS
.




If pressure in producer W1 is supported by several injectors then:

LaTeX Math Block
anchor1
alignmentleft
\delta q_1 =\sum_k f_{k1} \delta q_k

which makes one of the key assumptions in Capacitance Resistance Model (CRM).


See also


Capacitance Resistance Model (CRM)

[ DTR ] [ CTR ]