Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The bottom-hole pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2:

LaTeX Math Block
anchorDD4HWCase1
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyq_1 = \rm const
 and varying injection rate at injector W2 
LaTeX Math Inline
bodyq_2(t)
:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = p_i - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in injector's W2 flowrate 

LaTeX Math Inline
body \delta q_2
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as: 
LaTeX Math Inline
bodydq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau
.

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q_2 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 21}(t) \cdot  \delta q_2

which leads to 

LaTeX Math Block Reference
anchorCase1
.



Case #2 – Constant BHP
LaTeX Math Inline
bodyp_1 = \rm const

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = \rm const

The time derivative is going to be zero as the bottom-hole pressure in producer W1 stays constant at all times:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) \right)^{\cdot} = 0


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = - p_{u,\rm 21}(0) \cdot q_2(t) -  \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau) 

The zero-time value of of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm 11}(0) = 0, \, p_{u,\rm 21}(0) = 0
which leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau)  = -  \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau) 

Consider a step-change in producer's W1 flowrate 

LaTeX Math Inline
body \delta q_1
and injector's W2 flowrate 
LaTeX Math Inline
body \delta q_2
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as: as 
LaTeX Math Inline
bodydq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau
 and 
LaTeX Math Inline
bodydq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau
. Substituing Substituting this to 
LaTeX Math Block Reference
anchorCase2_PSS_p11_temp
 leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta q_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 21}(t-\tau) \delta q_2 \cdot \delta(\tau) \,  d\tau 


LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
 \dot p_{u,\rm 11}(t)  \delta q_1   = -  \dot p_{u,\rm 21}(t) \delta q_2  

which leads to 

LaTeX Math Block Reference
anchorCase2
.



For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta q_1 / \delta q_2
is getting stabilised over time as:

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_{t,1} V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 21}(t \rightarrow \infty) \rightarrow \frac{t}{c_{t,2} V_{\phi,2}}


where

LaTeX Math Inline
bodyc_{t,1}

average drain-area  total compressibility of formation around producer W1

LaTeX Math Inline
bodyc_{t,2}

average drain-area  total compressibility of formation around injector W2

Substituting 

LaTeX Math Block Reference
displaytextCase2_PSS_p11
 and 
LaTeX Math Block Reference
displaytextCase2_PSS_p21
 in 
LaTeX Math Block Reference
displaytextCase2
 one arrives to
LaTeX Math Block Reference
displaytextCase2_PSS
.


...

Capacitance Resistance Model (CRM)

[ DTR ] [ CTR ]