Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Consider a well-reservoir system consisting of:

  • producing well W1 draining the reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 1}
  • water injecting well W2 supporting pressure in reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 2}
     which includes the drainage volume 
    LaTeX Math Inline
    bodyV_{\phi, 1}
     of producer W1 and potentially other producers. 

The drainage volume difference

LaTeX Math Inline
body\delta V_{\phi} = V_{\phi, 2} - V_{\phi, 1} >0
 may be related to the fact that water injection W2 is shared between
LaTeX Math Inline
bodyV_{\phi, 1}
 and another reservoir  or with another producer. 

Case #1 –  Constant flowrate production 
LaTeX Math Inline
bodyq_1 = \rm const >0


The pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2:

LaTeX Math Block
anchorDD4HW
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

where

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_2
value.

LaTeX Math Inline
bodyp_{u,\rm 21}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W2

Case #2 – Constant BHP 
LaTeX Math Inline
bodyp_1 = \rm const


The flowrate response 

LaTeX Math Inline
body\delta q_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2
 in injector W2:

LaTeX Math Block
anchorCase2
alignmentleft
\delta q_1 = - \frac{p_{u,\rm 21}(t)}{p_{u,\rm 11}(t)} \cdot \delta q_2

where

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_2
in injector W2.

LaTeX Math Inline
bodyp_{u,\rm 21}(t)

cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W2

LaTeX Math Inline
bodyp_{u,\rm 11}(t)

drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Expand
titleDerivation

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t) dq_1 - \int_0^t p_{u,\rm 21}(t) dq_2 = \rm const

The time derivative is going to be 

LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t) dq_1 \right)^{\cdot} - \left( \int_0^t p_{u,\rm 21}(t) dq_2 \right)^{\cdot} = 0




For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta q_1 / \delta q_2
is getting stabilised over time as:

LaTeX Math Block
anchorCase2_PSS
alignmentleft
\delta q_1 / \delta q_2 = f_{21} = \frac{c_{t,2} V_{\phi, 2}}{c_{t,1} V_{\phi, 1}} = \rm const

which makes one of the key assumptions in Capacitance Resistance Model (CRM).





Expand
titleDerivation

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,2} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_{t,1} V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 21}(t \rigtharrow \infty) \rightarrow \frac{t}{c_{t,2} V_{\phi,2}}


where

LaTeX Math Inline
bodyc_{t,1}

average drain-area  total compressibility of formation around producer W1

LaTeX Math Inline
bodyc_{t,2}

average drain-area  total compressibility of formation around injector W2



Substituting 

LaTeX Math Block Reference
displaytextCase2_PSS_p11
 and 
LaTeX Math Block Reference
displaytextCase2_PSS_p21
 in 
LaTeX Math Block Reference
displaytextCase2
 one arrives to
LaTeX Math Block Reference
displaytextCase2_PSS
.