Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleContent
Column
width70%
Panel
bgColorAzure

Table of Contents
maxLevel2
indent10 px
stylecircle

Column
width30%


CRM – Single-

...

Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorCRMST
alignmentleft
q^{\uparrow}(t) =  f \, q^{\downarrow}(t)  -+ \tau \cdot \frac{ d q^{\uparrow}}{ dt } =  f \cdot q^{\downarrow}(t)   - \betagamma \cdot \frac{d p_{wf}}{dt}

where

LaTeX Math Inline
bodyq^{\uparrow}(t)

total
average surface production per well

LaTeX Math Inline
bodyq^{\downarrow}(t)

total
average surface injection per well

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
bodyf

unitless constant, showing the share of injection which actually contributes to production

LaTeX Math Inline
body\tau

time-measure constant, related to well productivity
[ s/Pa ]

LaTeX Math Inline
body\

beta

gamma

Reservoir Storage
storage-measure constant, related to reservoir volume and compressibility [ m3/Pa ]



The 

LaTeX Math Inline
body\tau
 and 
LaTeX Math Inline
body\betagamma
 constants are related to some primary well and reservoir characteristicsproperties:

LaTeX Math Block
anchorbeta
alignmentleft
\betagamma = c_t \, V_\phi
LaTeX Math Block
anchorIYYPU
alignmentleft
\tau = \frac{\betagamma}{J} = \frac{c_t  V_\phi}{J}

where

LaTeX Math Inline
bodyc_t

total formation-fluid compressibility

LaTeX Math Inline
bodyV_\phi = \phi \, V_R

drainable reservoir volume

LaTeX Math Inline
bodyV_R

total rock volume within the drainage area

LaTeX Math Inline
body\phi

average effective reservoir porosity

LaTeX Math Inline
bodyJ

total fluid productivity index


Total formation compressibility is a linear sum of reservoir/fluid components:

LaTeX Math Block
anchorc_t
alignmentleft
c_t = c_r +  s_w c_w + s_o  c_w + s_g c_g

where

LaTeX Math Inline
bodyc_r

rock compressibility

LaTeX Math Inline
bodyc_w, \, c_o, \, c_g

water, oil, gas compressibilities

LaTeX Math Inline
bodys_w, \, s_o, \, s_g

water, oil, gas formation saturations




Panel
bgColorPapayaWhip
Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can be re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_{rocks}r \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchor4XNCYct
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

LaTeX Math Block
anchor4XNCY
alignmentleft
V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot  [p_i - p_r(t)] \big]

where

LaTeX Math Inline
bodyp_i
is field-average initial formation pressure,
LaTeX Math Inline
bodyV^\circ_{\phi}
is initial drainage volume,


LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,

LaTeX Math Inline
bodyV_{\phi}(t)
is drainage volume at time moment
LaTeX Math Inline
bodyt
.


Equation

LaTeX Math Block-ref
anchorct
can be rewritten as:

LaTeX Math Block
anchordVphi4XNCY
alignmentleft
\frac{dV_{\phi}}{dp} = c_t \, V_{\phi} \, \cdotdp


The change dynamic variations in drainage volume

LaTeX Math Inline
bodydV_{\phi}
is leading to formation pressure variation are due to production/injection:

LaTeX Math Block
anchor4XNCY
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \frac{1}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau

and leading to corresponding formation pressure variation:

LaTeX Math Block
anchor4XNCY
alignmentleft
dp  \Bigg] = \rm const
The last equation can be rewritten as
= p_i - p_r(t)

thus making

LaTeX Math Block Reference
anchordVphi
become:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \biggleft[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \biggright]

which leads to

LaTeX Math Block Reference
anchorCRMST
.



The equation 

LaTeX Math Block Reference
anchorCRMST
can be integrated explicitly:

LaTeX Math Block
anchorO2Q4L
alignmentleft
q^{\uparrow} (t) =\exp(-t/\tau)  \cdot \left[ \ q^{\uparrow} (0) + \tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) - \gamma \frac{dp}{ds} \right] ds   \ \right]

and written in equivalent form:

LaTeX Math Block
anchorY9PYZ
alignmentleft
q^{\uparrow} (t) =\exp(-t/\tau)  \cdot \left[ \ q^{\uparrow} (0) + 
\tau^{-1} \gamma \cdot  \big( p(0)  - p(t) \cdot  \exp(t/\tau) \big)
+\tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) + \gamma \cdot p(s) \right] ds   \ \right]


The 
objective function is:

LaTeX Math Block
anchorM00IX
alignmentleft
E[\tau, \betagamma, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2   \rightarrow \min 


The basic constraints are:

LaTeX Math Block
anchor4SBJA
alignmentleft
\tau \geq  0 , \quad \betagamma \geq 0,  \quad  0f \leq geq 0


The additional constraints may be imposed as:

LaTeX Math Block
anchorINEYC
alignmentleft
f \leq 1

which means that a part of injection (

LaTeX Math Inline
body1 - f
) is going away from the reservoir drained by producer.

CRMP – Multi-

...

Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorO2A2V
alignmentleft
q^{\uparrow}_jn (t) + = \sum_i^{n_i}tau_n \cdot  \frac{ d q^{\uparrow}_n}{ dt }= \sum_m f_{ijnm} \cdot q^{\downarrow}_im(t)  - \taugamma_jn  \cdot  \frac{ d p_n}{dt}


This equation can be integrated explicitly:

LaTeX Math Block
anchorqexp
alignmentleft
q^{\uparrow}_j}{ dt }  - \beta_j  \cdot  \frac{d p_j}{dt}n (t) =\exp(-t/\tau_n) \cdot \left[ \  q^{\uparrow}_n (0) + \tau_n^{-1}  \cdot \int_0^t \exp(s/\tau_n) \left[ \sum_m  f_{nm} \cdot  q^{\downarrow}_m(s) - \gamma_n \frac{dp_n}{ds} \right] ds  \right]


The objective function is:

LaTeX Math Block
anchorPQYQ2
alignmentleft
E[\tau_n, \betagamma_n, f_{nm}] = \sum_k \sum_jn \big[ q^{\uparrow}_jn(t_k) - \tilde q^{\uparrow}_jn(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_jn \geq  0 ,  \quad \betagamma_jn \geq 0,  \quad f_{ijnm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ijnm} \leq 1

ICRM  – Integrated Multi-

...

Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorLBWVO
alignmentleft
Q^{\uparrow}_jn (t) = \sum_i^{n_i} f_{ijnm} Q^{\downarrow}_in(t)  - \tau_jn \cdot \big[ q^{\uparrow}_jn(t) - q^{\uparrow}_jn(0) \big]  - \betagamma_jn \cdot \big[ p_jn(t) - p_jn(0) \big]


The objective function is:

LaTeX Math Block
anchorFNDCZ
alignmentleft
E[\tau_n, \betagamma_n, f_{nm}] =  \sum_k \sum_jn \big[ Q^{\uparrow}_jn(t_k) - \tilde Q^{\uparrow}_jn(t_k) \big]^2   \rightarrow \min 

...

LaTeX Math Block
anchorVBB0S
alignmentleft
\tau_j \geq  0 ,  \quad \betagamma_jn \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


QCRM  – Liquid-Control Multi-Injector  Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorQCRM
alignmentleft
p_n(t) = p_n(0) - \tau_n / \gamma_n  \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big]  - \gamma_n^{-1} \cdot Q^{\uparrow}_n (t) + \gamma_n^{-1} \cdot \sum_m f_{nm} \ Q^{\downarrow}_m(t)  


The objective function is:

LaTeX Math Block
anchorHRSYF
alignmentleft
E[\tau_n, \gamma_n, f_{nm}] =  \sum_k \sum_n \big[ p_n(t_k) - \tilde p_n(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchor4BDL3
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1,  \quad p_{nr}(0) > 0


where

LaTeX Math Block
anchor7O26X
alignmentleft
p_{nr}(0) = p_n(0) + (\tau_n / \gamma_n)  \cdot q^{\uparrow}_n(0)

is the initial formation pressure.

The equation

LaTeX Math Block Reference
anchorQCRM
 can be re-written with explicit form of initial formation pressure:

LaTeX Math Block
anchorN4TZ7
alignmentleft
p_n(t) = p_{nr}(0) + (\tau_n / \gamma_n)  \cdot  q^{\uparrow}_n(t)  + \gamma_n^{-1} \cdot \sum_m f_{nm}  \ Q_m^{\downarrow}(t)   

where

LaTeX Math Inline
bodyQ_m
 could be both producer
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\uparrow%7D
or injector
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\downarrow%7D
.


If 

LaTeX Math Inline
body--uriencoded--p_%7Bnr%7D(0)
 is known then it can be fixed during the search loop which normally improves the quality of future production forecasts.


XCRM  – Liquid-Control Cross-well Capacitance Resistance Model


Some extensions to conventional CRM model can be found in XCRM – Liquid-Control Cross-well Capacitance Resistance Model @model.


ELPM  – Explicit Linear Production Model

Some extensions to conventional CRM model can be found in Explicit Linear Production Model


See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)

Production – Injection Pairing @ model

[ Slightly compressible Material Balance Pressure @model ]

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

CRM as MDCV @model


References

...



Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

RAFAEL WANDERLEY DE HOLANDA, CAPACITANCE RESISTANCE MODEL IN A CONTROL SYSTEMS FRAMEWORK: A TOOL FOR DESCRIBING AND CONTROLLING WATERFLOODING RESERVOIRS, 2015.pdf


Jong S. Kim, ICRM


Anh Phuong Nguyen, CAPACITANCE RESISTANCE MODELING FOR PRIMARY RECOVERY, WATERFLOOD AND WATER-CO2 FLOOD, 2012.pdf