Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Consider a well-reservoir system (Fig. 1) consisting of:

  • producing well W1 draining 1 with total sandface flowrate 
    LaTeX Math Inline
    bodyq^{\uparrow}_1(t)>0
     and BHP 
    LaTeX Math Inline
    bodyp_1(t)>0
    , draining the reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 1}
     

  •  supporting

    water injecting well W

    2

    0 with total sandface flowrate 

    LaTeX Math Inline
    bodyq^{\downarrow}_0(t) <0
    , supporting pressure in reservoir volume
    LaTeX Math Inline
    bodyV_{\phi,

    2} which includes

    0}
     


The injection drainage volume  

LaTeX Math Inline
bodyV_{\phi, 0}
 includes the drainage volume 
LaTeX Math Inline
bodyV_{\phi, 1}

...

of producer W1

...

 and may be equal to it The drainage volume difference

LaTeX Math Inline
body\delta V_{\phi, 0} = V_{\phi} = , 1}
or may be bigger  
LaTeX Math Inline
bodyV_{\phi, 20} - > V_{\phi, 1} >0
 may be related to the fact that water injection W2 is shared between
 in case injector W0 supports other producers {W1 .. WN}: 
LaTeX Math Inline
bodyV_{\phi, 0} = \sum_{k=1}^N V_{\phi, k}
 and another reservoir  or with another producer. 
.


Image Added

Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate

...

production: 
LaTeX Math Inline
body

...

q^{\uparrow}_1 = \rm const >0


The bottom-hole pressure response The pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2q^{\downarrow}_0
 in injector W20:

LaTeX Math Block
anchorDD4HWCase1
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2q^{\downarrow}_0

where

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_20
value.

LaTeX Math Inline
bodyp_{u,\rm 2101}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W2W0


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyq^{\uparrow}_1 = \rm const
 and varying injection rate at injector W0 
LaTeX Math Inline
bodyq^{\downarrow}_0(t)
:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau)

Consider a step-change in injector's W0 flowrate 

LaTeX Math Inline
body \delta q^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be writen as 

LaTeX Math Block
anchor1
alignmentleft
q_0(\tau) = \delta q^{\downarrow}_0 \cdot H(\tau)

where 

LaTeX Math Inline
bodyH(\tau)
is Heaviside step function:

LaTeX Math Block
anchor1
alignmentleft
H(\tau) = \begin{cases} 0, &  \tau <0 \\  1, &\tau \geq 0\end{cases}

The differential

LaTeX Math Inline
bodydq_0
 then can be written as:

LaTeX Math Block
anchor1
alignmentleft
d q^{\downarrow}_0(\tau) = q_0'(\tau) d\tau = \delta q^{\downarrow}_0 \cdot H'(\tau) \,  d\tau = \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchor1
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 01}(t) \cdot  \delta q^{\downarrow}_0

which leads to 

LaTeX Math Block Reference
anchorCase1
.



Case #2 – Constant BHP: 
LaTeX Math Inline
bodyp_1 = \rm const


Assume that the flowrate in producer W1 is being automatically adjusted by

LaTeX Math Inline
body\delta q^{\uparrow}_1(t)
 to compensate the bottom-hole pressure variation 
LaTeX Math Inline
body\delta p_1(t)
in response to the  total sandface flowrate variation 
LaTeX Math Inline
body\delta q^{\downarrow}_0
 in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times
LaTeX Math Inline
body\delta p_1(t) = \delta p_1 = \rm const

...

. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, The flowrate response 

LaTeX Math Inline
body\delta qq^{\uparrow}_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta q_2q^{\downarrow}_0
 in injector W20 is going to be:

LaTeX Math Block
anchorCase2
alignmentleft
\delta qq^{\uparrow}_1(t) = -^{\uparrow} \frac{\dot p_{u,\rm 2101}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_2q^{\downarrow}_0

where

LaTeX Math Inline
bodyt

time

since the water injection

since injector's W0 rate has changed

by the 

by 

LaTeX Math Inline
body\delta

q_2

q^{\downarrow}_0

in injector W2

.

LaTeX Math Inline
body\dot p_{u,\rm

21

01}(t)

cross
time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W
2
0

LaTeX Math Inline
body\dot p_{u,\rm 11}(t)

drawdown

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Expand
titleDerivation


Case2_PSS_p11
Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchor
1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) 
dq
dq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 
21
01}(t-\tau) 
dq_2
dq^{\downarrow}_0(\tau) = \rm const

The time derivative is going to

be Case2_PSS_p11Case2_PSS_p11

be zero as the BHP in producer W1 stays constant at all times:

LaTeX Math Block
anchor
1
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) 
dq
dq^{\uparrow}_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 
21
01}(t-\tau) 
dq_2
dq^{\downarrow}_0(\tau) \right)^{\cdot} = 0


LaTeX Math Block
anchor
1
alignmentleft
p_{u,\rm 11}(0) \cdot
q
 \dot q^{\uparrow}_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) 
dq
dq^{\uparrow}_1(\tau)  = - p_{u,\rm 
21
01}(0) \cdot
q_2(t)
 \dot q^{\downarrow}_0(t) -  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm 11}(0) = 0, \, p_{u,\rm 01}(0) = 0
which leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau)  = -  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau) 

Consider a step-change in producer's W1 flowrate 

LaTeX Math Inline
body \delta q^{\uparrow}_1
and injector's W0 flowrate 
LaTeX Math Inline
body \delta q^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydq^{\uparrow}_1(\tau) = \delta q^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
 .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and 

LaTeX Math Inline
bodydq^{\downarrow}_0(\tau) = \delta q^{\downarrow}_0 \cdot \delta(\tau) \, d\tau
.

Substituting this to 

LaTeX Math Block Reference
anchorCase2_PSS_p11_temp
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta q^{\uparrow}_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 
21
01}(t-\tau)
dq_2(\tau)
 \delta q^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau 


LaTeX Math Block
anchor1
alignmentleft
 \dot p_{u,\rm 11}(t)  \delta q^{\uparrow}_1   = -  \dot p_{u,\rm 01}(t) \delta q^{\downarrow}_0  

which leads to 

LaTeX Math Block Reference
anchorCase2
.



For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,20} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta qq^{\uparrow}_1 / \delta q_2q^{\downarrow}_0
is getting stabilised over time as:

LaTeX Math Block
anchorCase2_PSS
alignmentleft
\delta qq^{\uparrow}_1 / \delta q_2q^{\downarrow}_0 = - f_{2101} = - \frac{c_{t,2} V_{\phi, 21}}{c_{t,1} V_{\phi, 10}} = \rm const

which makes one of the key assumptions in Capacitance Resistance Model (CRM)The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider

LaTeX Math Block Reference
anchorCase2_PSS
 as constant in time.


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

For the finite-volume reservoir 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,

2

0} < \infty
 the DTR and CTR are both going through the PSS flow regime at late transient times:


LaTeX Math Block
anchorCase2_PSS_p11
alignmentleft
p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_
{
t
,1}
 V_{\phi, 1}}



LaTeX Math Block
anchorCase2_PSS_p21
alignmentleft
p_{u,\rm 
21
01}(t \
rigtharrow
rightarrow \infty) \rightarrow \frac{t}{c_
{
t
,2}
 V_{\phi,
2
0}}


where

LaTeX Math Inline
bodyc_

{

t

,1}

average drain-area  total compressibility of formation

 around producer W1

 within  

LaTeX Math Inline
body

c

V_{

t

\phi,

2

1}

average drain-area  total compressibility of formation around injector W2

 which is jointly drained by producer W1 and injector W0 

Substituting 

LaTeX Math Block Reference

displaytext

anchorCase2_PSS_p11
 and 
LaTeX Math Block Reference

displaytext

anchorCase2_PSS_p21
 in 
LaTeX Math Block Reference

displaytext

anchorCase2
 one arrives to
LaTeX Math Block Reference
anchorCase2_PSS
.



In case injector W0 supports only one producer W1, then both wells drain the same reservoir volume 

LaTeX Math Inline
bodyV_{\phi, 0} = V_{\phi, 1}
 so that 
LaTeX Math Block Reference

...

displaytextCase2_PSS

...

anchorCase2_PSS
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\delta q^{\uparrow}_1 = -\delta q^{\downarrow}_0

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W0.


In case injector W0 supports many producers {W1 .. WN} then all injection shares towards producers are going to sum up to a unit value:

LaTeX Math Block
anchorfok1
alignmentleft
\sum_{k=1}^N f_{0k} = 1 	\quad \Leftrightarrow \quad \sum_{k=1}^N V_{\phi,k} = V_{\phi,0}

with constant coefficients

LaTeX Math Inline
bodyf_{0k} \geq 0, \ {k=\{i..N \} }
unless there is a thief injection outside the drainage area of all producers and in this case: 

LaTeX Math Block
anchorfokless1
alignmentleft
\sum_{k=1}^N f_{0k} < 1	\quad \Leftrightarrow \quad \sum_{k=1}^N V_{\phi,k} < V_{\phi,0}



If pressure around producer W1 is supported by several injectors 

LaTeX Math Inline
bodyN_{\rm inj} > 1
then production response in producer W1 is going to be:

LaTeX Math Block
anchorfk1
alignmentleft
\delta q^{\uparrow}_1 =-\sum_i f_{i1} \delta q^{\downarrow}_i

with constant coefficients

LaTeX Math Inline
bodyf_{i1} \geq 0, \ {i=\{0..N_{\rm inj} \} }


The equations 

LaTeX Math Block Reference
anchorfok1
LaTeX Math Block Reference
anchorfokless1
 and 
LaTeX Math Block Reference
anchorfk1
make one of the key assumptions in Capacitance Resistance Model (CRM).


It is important to note that CRM assumption that injector W0 may drain bigger volume than producer W1  

LaTeX Math Inline
bodyV_{\phi, 0}> V_{\phi, 1}
 is a misnomer in most practical cases.

When wells (producers and injectors) are placed into the same connected reservoir volume they drain the same total volume 

LaTeX Math Inline
bodyV_\phi
all together and all UTRs will have the same LTR asymptotic:

LaTeX Math Block
anchor1
alignmentleft
p_{u,\rm ik}(t \rightarrow \infty ) \rightarrow \frac{t}{\rm RS}, \quad \forall i \in N_{\rm inj}, k \in N.

where 

LaTeX Math Inline
body\rm RS = \int_V c_t \, \phi \, dV
is total reservoir storage connecting all the wells. 


Moreover, if each well is placed in different reservoir volumes which are only connected through wellbores then again they will all drain the same volume which is the sum of all connected volumes through the wellbores and all UTRs will again trend to the same LTR asymptotic.


In order to relate true UTRs (from numerical grid simulations or from deconvolution) to the CRM injection share constants 

LaTeX Math Inline
bodyf_{ik}
 one needs to implement a certain workflow:

  1. Start with true UTRs 
    LaTeX Math Inline
    body\displaystyle p_{u, ik}(t)
    with the same LTR asymptotic
    LaTeX Math Inline
    body\displaystyle p_{u, ik}(t) \rightarrow \frac{t}{RS}
    .
  2. Select injector W0 
    1. Select producer W1
      1. Perform a convolution tests to account for the impact from {W2 .. WN} production and from {W-1 .. W-M} on to CTR_01
        LaTeX Math Inline
        bodyp_{u, 01}(t)
        LaTeX Math Inline
        body\displaystyle p^*_{u, 01}(t) = p_{u, 01}(t) + \sum_{i \neq 0 \in {\rm inj}} p_{u, i1}(t) \cdot q^{\downarrow}_i(t)
      2. Perform two convolution tests to account for the impact from {W2 .. WN} production on to DTR_11
        LaTeX Math Inline
        bodyp_{u, 11}(t)
         and CTR_01
        LaTeX Math Inline
        bodyp_{u, 01}(t)
        :
        • Test #1 – DTR_11
          • Calculate interfering DTR_11: 
            LaTeX Math Inline
            body\displaystyle p^*_{u, 11}(t) = p_{u, 11}(t) + \sum_{k \neq 1 \in {\rm prod}} p_{u, k1}(t) \cdot q^{\uparrow}_k(t)
            , meaning that all injectors W0 are shut-down and all producers were working with their historical rates 
            LaTeX Math Inline
            bodyq^{\uparrow}_k(t)
            , except producer W1 which is working with unit-rate
        •  Test #2 – CTR_01
          • Calculate interfering CTR_01: 
            LaTeX Math Inline
            body\displaystyle p^*_{u, 01}(t) = p_{u, 01}(t) + \sum_{i \neq 0 \in {\rm inj}} p_{u, i1}(t) \cdot q^{\downarrow}_i(t)
            , meaning that all producers are shut-down and all injectors are working with their historical rates 
            LaTeX Math Inline
            bodyq^{\downarrow}_i(t)
            , except injector W0 which is working with unit-rate
      3. Calculate injection share constant
        LaTeX Math Inline
        body\displaystyle f_{01} = \frac{\dot p^*_{01}(t)}{\dot p^*_{11}(t)} \Bigg|_{t \rightarrow \infty}
         as LLS over equation: 
        LaTeX Math Inline
        body\displaystyle \dot p^*_{01}(t) = f_{01} \cdot \dot p^*_{11}(t)
    2. Repeat the same for other producers (starting from point 2a onwards)
  3. Repeat the same for other injectors (starting from point 2 onwards)
Show If
userama@naftacollege.com


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the well W1 with constant BHP in a multi-well system :

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) - \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

LaTeX Math Block
anchor1
alignmentleft
\dot p_1(t) = - \left( \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) \right)^\cdot - 
\left( \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) \right)^\cdot = 0


LaTeX Math Block
anchor1
alignmentleft
\sum_{k \in {\rm prod}} p_{u,\rm k1}(0) \dot q^{\uparrow}_k(t) + 
\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm kk}(t-\tau) dq^{\uparrow}_k(\tau) = 
- \sum_{i \in {\rm inj}} p_{u,\rm i1}(0) \dot q^{\downarrow}_i(t) 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm kj}(0) = 0, \ \forall k,j \in \mathbb{Z}
which leads to:

LaTeX Math Block
anchor1
alignmentleft
\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

Let's separate producer W1 and injector W0 terms: 

LaTeX Math Block
anchorpre_eq
alignmentleft
 \int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau)  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 


Consider a step-change in injector's W0 flowrate 

LaTeX Math Inline
body \delta q^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydq^{\uparrow}_1(\tau) = \delta q^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
, leading to a step-change in production rate in producer  W1
LaTeX Math Inline
bodydq^{\uparrow}_1(\tau) = \delta q^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
.

Substituting this to 

LaTeX Math Block Reference
anchorpre_eq
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\dot p_{u,\rm 11}(t) \delta q^{\uparrow}_1 + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \dot p_{u,\rm 01}(t) \delta q^{\downarrow}_0  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 






Again it is important to note a difference between

  • CRM assumptions (constant PI, constant drainage volumes with no flow boundaries and constant total compressibility) – which may or may not take place and hence may or may not make CRM applicable in a specific case

and

  • CRM concept of mismatching drainage volumes between producers and injectors which is just a terminology and does not exert restrictions on well-reservoir system


See also

...

[UTR] [ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]