Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia 

Motivation


In some specific subsurface applications which require the knowledge of subsurface temperature distributions the assumption of the Constant Areal Geothermal Temperature Profile is not valid and the problem requires a proper 3D modelling solution.


Outputs

LaTeX Math Inline
body--uriencoded--T

_e

_G(t, %7B\bf r%7D)

LaTeX Math Inline
body--uriencoded--G_T(%7B\bf r%7D)

spatial geothermal temperature distribution
Geothermal Temperature Gradient


Inputs

LaTeX Math Inline
bodyt

Astronomic time
Local Calendar Time

LaTeX Math Inline
body--uriencoded--

\lambda(

%7B\bf r%7D

)

Rock thermal conductivity 
Position vector

LaTeX Math Inline
body

j_

z(

x,y

l)

True vertical component of Regional Earth's heat flux (usually 

LaTeX Math Inline
body--uriencoded--

j_z = 25 \div 55 \ mW/m%5e2)

Assumptions

Equations

Below Neutral Temperature LayerAbove Neutral Temperature Layer LaTeX Math Block
anchorT_g
alignmentleft
T_g

%7B\bf j%7D(x,y, z

)

=

T_n(x,y) + \int_{z_n}^z G_T(x,y,z) dz
LaTeX Math Block
anchorT_z
alignmentleft
T(t, x, y,z) = T_s + \frac{j_z(x,y)}{\lambda_e} (z-z_s) + T_A \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - t_{min}}{\delta_T} + (z_s -z) \sqrt {\frac{\pi}{a_e \, \delta_T}} \, \right]
LaTeX Math Block
anchorG_T
alignmentleft
G_T(x, y, z) =\frac{d T_g}{d z}= \frac{j_z(x,y,z)}{\lambda_e}

where

где

z_%7Bref%7D)

Earth's Heat Flux at some reference depth 

LaTeX Math Inline
body--uriencoded--z = z_%7Bref%7D
 as function of 
LaTeX Math Inline
body (x, \, y)

LaTeX Math Inline
body--uriencoded--q(%7B\bf r%7D)

Volumetric density of heat sources distributed throughout the subsurface rock volume

LaTeX Math Inline
bodyT_s(t, x, y)

Surface

LaTeX Math Inline
bodyz_s

TVDss of the Earth's surface

LaTeX Math Inline
bodyT_{srf}

Annual average surface

temperature based on weather reports

LaTeX Math Inline
body

T_A

Annual average surface temperature variation based on weather reports

LaTeX Math Inline
body\delta_T

Temperature variation cycle (usually  LaTeX Math Inlinebody

--uriencoded--

\delta t = 1 \, %7B\rm year%7D)

LaTeX Math Inline
bodyt_{min}

Temperature variation cycle shift (time moment of minimal temperature with respect to astronomic midnight 0:00)

LaTeX Math Inlinebodya_e =

\

frac{\

lambda_e

}{\rho_e \, c_e}Rock temperature conductivity

LaTeX Math Inline
body\rho_e

Rock density

LaTeX Unit
bodyc_e

Rock specific volumetric heat capacity at constant pressure

See Also

Geology / Geothermal Temperature Field

Geothermal Temperature Profile @model ]

References

...

grouparax

...

bgColorpapayawhip
titleARAX

...

groupeditors

...

bgColor#FFDFDD

...

titleEditor

Геотермическое поле земли

Геотермическое распределение температуры 

LaTeX Math Inline
bodyT_g(x,y,z)
 в массиве пород данного региона являестя стационарным и определяется региональным тепловым потоком из недр земли, условием теплообмена на поверхности и теплопроводностью пород.

В отсутствии латерального теплового потока и сильной анизотропии теплопроводности, это распределение может быть записано через вертикальный геотермический градиент, следующим образом (см. вывод):

LaTeX Math Block
anchorT_g
alignmentleft
T_g(x,y,z) = T_{ref}(x,y) + \int_{z_{ref}}^z G_T(x,y,z) dz

где 

LaTeX Math Block
anchorG_T
alignmentleft
G_T(z) =\frac{d T_g}{d z}= \frac{j_z}{\lambda_e}

(%7B\bf r%7D)

Subsurface Thermal Conductivity profile as function of position vector

LaTeX Math Inline
body--uriencoded--a_%7Be%7D(%7B\bf r%7D)

Subsurface Thermal diffusivity profile as function of position vector

where

LaTeX Math Inline
bodyl

Measured Depth of wellbore trajectory with reference to Earth's surface (

LaTeX Math Inline
bodyl=0

вертикальная проекция регионального геотермического градиента

...

LaTeX Math Inline
bodyj_z(x,y)

...

LaTeX Math Inline
bodyz

...

)

LaTeX Math Inline
body

...

z_s = z(l=0)

TVDss of the Earth's surface in a given location. In case the Earth's surface is at sea level then 

LaTeX Math Inline
bodyz_

...

LaTeX Math Inline
bodyT_{ref}(x,y) = T_g(x,y,z_{ref})

...

titleОбщий подход к моделированию геотермического поля

...

LaTeX Math Inline
bodyT_g(x,y,z)

...

s = 0


Assumptions




Equations


LaTeX Math Block
anchorT_z

...

alignmentleft
\

...

rho_e \, c_e \frac{\partial T_G}{\partial t} + \nabla \left( \lambda_e \nabla T_G \right) = q({\bf r})



LaTeX Math Block
anchor1
alignmentleft
 T_G(t, x, y, z = z_s) = T_s(t, x, y)




LaTeX Math Block
anchor1
alignmentleft
\Big[ \lambda_e \nabla T_G \Big]_{z=z_{ref}} = {\bf j}(x,y, z = z_{ref})



LaTeX Math Block
anchorG_T
alignmentleft
G_T({\bf r}) = \frac{j_z({\bf r})}{\lambda_e({\bf r})}



See Also

...

Geology / Geothermal Temperature Field

Constant Areal Geothermal Temperature Profile @model ] [ Geothermal Temperature Gradient ]


References

...



При анализе небольших по площади участков (десятки километров) можно пренебречь влиянием латерального теплового потока и анизотропией тензора теплопроводности и тогда, геотермическое распределение температуры в регионе можно записать как

Show If
grouparax


Как правило, теплопроводность имеет небольшую анизотропию вдоль и поперек горизонта залегания и в главных осях имеет вид:

Panel
bgColorpapayawhip
titleARAX

J. H. Davis, D. R. Davis, Earth’s surface heat flux - London -2010.pdf

Georgios Florides, Soteris Kalogirou, Annual ground temperature measurements at various - Cyprus - 2014.pdf

Геотермическое поле земли

quad \rightarrow \quad \partial_{\alpha} \, j_{\alpha} = 0

где

LaTeX Math Block
anchorgradT
alignmentleft
j_{\alpha}  = \lambda_{\, \alpha  \beta} \: \partial_{\beta} T_g
плотность теплового потока Земли

LaTeX Math Inline
body\hat \lambda = \lambda_{\, \alpha \, \beta}

тензор теплопроводности
LaTeX Math Block
anchor1
alignmentleft
\hat \lambda= \begin{pmatrix} 

\lambda_{\perp} & 0 & 0 \\ 

0 & \lambda_{\perp} & 0 \\

0 & 0 & \lambda_{||}

\end{pmatrix}

где

LaTeX Math Inline
body\lambda_{\perp}

теплопроводность пород вдоль горизонта залегания

LaTeX Math Inline
body\lambda_{||}

теплопроводность пород перпендикулярно горизонту залегания
LaTeX Math Block
anchornablaT
alignmentleft
\partial  j_z = 0  

откуда

LaTeX Math Block
anchordzT
alignmentleft
\lambda_z(x,y,z) \, \partial_z \, T_g = j_z(x,y)

где

LaTeX Math Inline
bodyj_z(x,y)
региональное распределение вертикально компоненты плотности теплового потока Земли.

Интегрируя уравнение

LaTeX Math Block Reference
anchordzT
получим уравнение
LaTeX Math Block Reference
anchorT_g
.

Условия теплообмена на поверхности задаются опорной глубиной и температурой.

Понятие опорной глубины и температуры связано с тем, что верхний слой грунта не является стационарным во времени и подвержен дневным и сезонным колебаниям температуры, вызванным переменным влиянием солнца и атмосферных явлений.

Как правило, эти влияния проникают не глубже 20 – 30 м. 

Эта отметка

LaTeX Math Inline
bodyz_{n_0}(x,y)
 называется глубиной залегания нейтрального слоя, а его температура
LaTeX Math Inline
bodyT_{n_0} = T_g(x,y,z_{n_0})
 называется температурой нейтрального слоя.

Именно ее и выбирают в качестве опорной для расчета температурного поля ниже опорной отметки.

Нейтральный слой

Математическая модель температуры грунта на произвольной глубине 

LaTeX Math Inline
body z
 и в произвольный момент времени 
LaTeX Math Inline
bodyt
, от момента начала цикла температурных колебаний, может быть решена численно.

Однако полезность этих расчетов на коротких временах (сутки и даже месяцы) ограничивается спонтанностью входящих в модель параметров:

  • волатильность степени солнечного потока в данном регионе в зависимости от облачности и степени поглощения/отражения поверхности земли
     
  • волатильности атмосферных явлений (ветер и осадки)
     
  • волатильности активности грунтовых вод

Для практических целей моделирования температуры пород выше нейтрального слоя вполне достаточно феноменологической корреляции [Kasuda, 1965]:

LaTeX Math Block
anchorT_z
alignmentleft
T(t, z) = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{srf}) + T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg] \, \cos \bigg[  \, 2 \pi \frac{t - t_{min}}{\delta_T} + (z_{srf} -z) \sqrt {\frac{\pi}{a_e \, \delta_T}} \, \bigg]

где

LaTeX Math Inline
bodyz_{srf}

абсолютная отметка поверхности земли (обычно полагается

LaTeX Math Inline
bodyz_{ref} =0
)

LaTeX Math Inline
bodyT_{srf}

средняя температура пород на поверхности (обычно по метеосводкам региона)

LaTeX Math Inline
bodyT_A

среднее значение амплитуды циклических колебаний на поверхности земли (обычно по метеосводкам региона)

LaTeX Math Inline
body\delta_T

период циклических колебаний температуры (обычно

LaTeX Math Inline
body\delta t = 1 \, {\rm год}
)

LaTeX Math Inline
bodyt_{min}

смещение от начала цикла при котором отклонение температуры от среднего

LaTeX Math Inline
bodyT_{ref}
минимально

LaTeX Math Inline
bodya_e = \frac{\lambda_e}{\rho_e \, c_e}

температуропроводность грунта

LaTeX Math Inline
body\rho_e

плотность грунта

LaTeX Unit
bodyc_e

удельная объемная теплоемкость грунта при постоянном давлении

Волатильность теплообмена с атмосферой зашифрована в параметры   

LaTeX Math Inline
bodyT_{srf}
 и 
LaTeX Math Inline
bodyT_A
 и определяется по региональным метеосводкам.

Формула

LaTeX Math Block Reference
anchorT_z
 применима как к сезонным, так и дневным колебаниям температуры, но с учетом вышесказанных оговорок о волатильности параметров теплообмена на коротких временах наблюдений.

По этой же формуле можно оценить глубину залегания нейтрального слоя (по пороговому значению погрешности температурных измерений):

LaTeX Math Block
anchorH_0
alignmentleft
z_{n_0} = z_{srf} + \sqrt{\frac{a_e \, \delta_T }{\pi}} \, \ln \frac{T_A }{\delta T_{err} }

где 

LaTeX Math Inline
body\delta T_{err}

измерительная погрешность термометра (обычно

LaTeX Math Inline
body\delta T_{err} = 0.1 \, ^\circ \rm C
)

Expand
title Вывод формулы глубины залегания нейтрального слоя

Для вывода формулы

LaTeX Math Block Reference
anchorH_0
запишем значение максимальной и минимальной температуры по формуле  
LaTeX Math Block Reference
anchorT_z
 в зависимости от момента времени на хронологической шкале цикла:

LaTeX Math Block
anchorEK0CC
alignmentleft
T_{max} = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{ref}) + T_A \, \exp \bigg[ \, {(z_{ref}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]
LaTeX Math Block
anchorKB9Q0
alignmentleft
T_{min} = T_{srf} + \frac{j_z}{\lambda_e} (z-z_{ref}) - T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]

откуда получается  размах температурных колебаний на глубине  

LaTeX Math Inline
bodyz
:

LaTeX Math Block
anchorRKEWH
alignmentleft
\delta T_{max} = T_{max} - T_{min} =  2 T_A \, \exp \bigg[ \, {(z_{srf}-z}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]
Если метрологическая погрешность термометра составляет 
LaTeX Math Inline
body\delta T_{err}
, то он в состоянии зарегистровать колебания свыше 
LaTeX Math Inline
body\delta T_{max} = 2 \, \delta T_{err}
 то есть:
LaTeX Math Block
anchorVV54D
alignmentleft
\delta T_{err} = T_A \, \exp \bigg[ \, {(z_{srf}-z_0}) \sqrt{\frac{\pi}{a_e \, \delta_T}} \, \bigg]

 откуда и вытекает формула 

LaTeX Math Block Reference
anchorH_0
.

Геотерма скважины

Геотермическое распределение температуры 

LaTeX Math Inline
bodyT_g(l)
 вдоль траектории данной скважины называется геотермой данной скважины и являестя как функцией геотермического поля региона, так и траектории данной скважины и задается следующей моделью:

LaTeX Math Block
anchor1
alignmentleft
T_g(l) = T_{n_0}(x,y) + \int_{z_{n_0}}^{z(l)} G_T(x,y,z) dz = T_{n_0}(x,y) + \int_{l_{n_0}}^l G_T(x,y,z(l)) \cos \theta dl 

где 

LaTeX Math Inline
bodyl_{n_0} = l(z_{n_0})

отметка нейтрального слоя вдоль траектории скважины

(обычно

LaTeX Math Inline
bodyl_{n_0} = z_{n_0}
так как начальные участки скважин не имеют сильного отклонения от вертикали)

В регионах, где  нейтральный слой остается постоянным по площади

LaTeX Math Inline
bodyT_{n_0}(x,y) = T_{n_0}= \rm const
, а геотермический градиент остается постоянным по площади по глубине 
LaTeX Math Inline
bodyG_T(x,y,z) = G_T = \rm const
, геотермическое распределение температуры в породах принимает простой вид:

LaTeX Math Block
anchorT_g_const
alignmentleft
T_g(l) = T_{n_0} + (z(l) - z_{n_0})  \, G_T \, \sin \theta(l) 

Однако в большом количестве практических случаев это не так и применение среднего по всему разрезу значения геотермического градиента для оценки геотермического распределения температур по формуле

LaTeX Math Block Reference
anchorT_g_const
может привести к значительным погрешностям.

Наиболее популярные причины отклонения геотермического профиля от

LaTeX Math Block Reference
anchorT_g_const
 являются:
 

большой контраст теплопроводности по горизонтам
латеральные потоки флюида (как секулярные так и возникшие в процессе разработки месторождений)
близкое расположение активного разлома

к котором следует еще добавить техногенные  явления в процессе геотермических исследований:

действующие перетоки в исследуемой скважине 
  • недостаточный срок стабилизации температуры после останова скважины для геотермических исследований
  • Наиболее популярными причинами дрейфа геотермы или е отдельных участков  по площади являются:
     

  • переменный по площади профиль теплопроводности пластов (вызванный особенностями распределения фаций и вертикальными разломами)
     
  • вертикальные перетоки в разломах и скважинах 
  • переменный тепловой поток Земли вызванный конвективными ячейками в мантии  
     
  • переменные условия теплообмена на поверхности земли (например суша-вода)