Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • producing well W1 with total sandface flowrate 
    LaTeX Math Inline
    bodyqq^{\uparrow}_1(t)>0
     and BHP 
    LaTeX Math Inline
    bodyp_1(t)>0
    , draining the reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 1}
     

  • water injecting well W0 with total sandface flowrate 

    LaTeX Math Inline
    bodyqq^{\downarrow}_0(t) <0
    , supporting pressure in reservoir volume
    LaTeX Math Inline
    bodyV_{\phi, 0}
     

...

Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate production: 
LaTeX Math Inline
body

...

q^{\uparrow}_1 = \rm const >0


The bottom-hole pressure response 

LaTeX Math Inline
body\delta p_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta qq^{\downarrow}_0
 in injector W0:

LaTeX Math Block
anchorCase1
alignmentleft
\delta p_1 = - p_{u,\rm 21}(t) \cdot \delta qq^{\downarrow}_0

where

LaTeX Math Inline
bodyt

time since the water injection rate has changed by the 

LaTeX Math Inline
body\delta q_0
value.

LaTeX Math Inline
bodyp_{u,\rm 01}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W0

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1 

LaTeX Math Inline
bodyqq^{\uparrow}_1 = \rm const
 and varying injection rate at injector W20 
LaTeX Math Inline
bodyq_2q^{\downarrow}_0(t)
:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dqdq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dqdq^{\downarrow}_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dqdq^{\downarrow}_0(\tau)

Consider a step-change in injector's W0 flowrate 

LaTeX Math Inline
body \delta qq^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be writen as 

LaTeX Math Block
anchor1
alignmentleft
q_0(\tau) = \delta qq^{\downarrow}_0 \cdot H(\tau)

where 

LaTeX Math Inline
bodyH(\tau)
is Heaviside step function:

LaTeX Math Block
anchor1
alignmentleft
H(\tau) = \begin{cases} 0, &  \tau <0 \\  1, &\tau \geq 0\end{cases}

The differential

LaTeX Math Inline
bodydq_0
 then can be written as:

LaTeX Math Block
anchor1
alignmentleft
d qq^{\downarrow}_0(\tau) = q_0'(\tau) d\tau = \delta qq^{\downarrow}_0 \cdot H'(\tau) \,  d\tau = \delta qq^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau

The responding pressure variation 

LaTeX Math Inline
body\delta p_1
in producer Wwill be:

LaTeX Math Block
anchor1
alignmentleft
\delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau)  \delta qq^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau = - p_{u,\rm 01}(t) \cdot  \delta qq^{\downarrow}_0

which leads to 

LaTeX Math Block Reference
anchorCase1
.


...

Assume that the flowrate in producer W1 is being automatically adjusted by

LaTeX Math Inline
body\delta qq^{\uparrow}_1(t)
 to compensate the bottom-hole pressure variation 
LaTeX Math Inline
body\delta p_1(t)
in response to the  total sandface flowrate variation 
LaTeX Math Inline
body\delta q_2q^{\downarrow}_0
 in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times
LaTeX Math Inline
body\delta p_1(t) = \delta p_1 = \rm const
. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response 

LaTeX Math Inline
body\delta qq^{\uparrow}_1
in producer W1 to the flowrate variation 
LaTeX Math Inline
body\delta qq^{\downarrow}_0
 in injector W0 is going to be:

LaTeX Math Block
anchorCase2
alignmentleft
\delta qq^{\uparrow}_1(t) = - \frac^{\uparrow} \frac{\dot p_{u,\rm 01}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta qq^{\downarrow}_0

where

LaTeX Math Inline
bodyt

time since injector's W0 rate has changed by 

LaTeX Math Inline
body\delta qq^{\downarrow}_0
.

LaTeX Math Inline
body\dot p_{u,\rm 01}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W0

LaTeX Math Inline
body\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well

...

Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the above 2-wells system with constant BHP:

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dqdq^{\uparrow}_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dqdq^{\downarrow}_0(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

LaTeX Math Block
anchor1
alignmentleft
\dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dqdq^{\uparrow}_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 01}(t-\tau) dqdq^{\downarrow}_0(\tau) \right)^{\cdot} = 0


LaTeX Math Block
anchor1
alignmentleft
p_{u,\rm 11}(0) \cdot \dot qq^{\uparrow}_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dqdq^{\uparrow}_1(\tau)  = - p_{u,\rm 01}(0) \cdot \dot qq^{\downarrow}_0(t) -  \int_0^t \dot p_{u,\rm 01}(t-\tau) dqdq^{\downarrow}_0(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm 11}(0) = 0, \, p_{u,\rm 01}(0) = 0
which leads to:

LaTeX Math Block
anchorCase2_PSS_p11_temp
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau) dq_dq^{\uparrow}_1(\tau)  = -  \int_0^t \dot p_{u,\rm 2101}(t-\tau) dq_2dq^{\downarrow}_0(\tau) 

Consider a step-change in producer's W1 flowrate 

LaTeX Math Inline
body \delta qq^{\uparrow}_1
and injector's W0 flowrate 
LaTeX Math Inline
body \delta qq^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydqdq^{\uparrow}_1(\tau) = \delta qq^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
 .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and 

LaTeX Math Inline
bodydqdq^{\downarrow}_0(\tau) = \delta qq^{\downarrow}_0 \cdot \delta(\tau) \, d\tau
.

Substituting this to 

LaTeX Math Block Reference
anchorCase2_PSS_p11_temp
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\int_0^t \dot p_{u,\rm 11}(t-\tau)  \delta qq^{\uparrow}_1 \cdot \delta(\tau) \,  d\tau  = -  \int_0^t \dot p_{u,\rm 01}(t-\tau) \delta qq^{\downarrow}_0 \cdot \delta(\tau) \,  d\tau 


LaTeX Math Block
anchor1
alignmentleft
 \dot p_{u,\rm 11}(t)  \delta qq^{\uparrow}_1   = -  \dot p_{u,\rm 01}(t) \delta qq^{\downarrow}_0  

which leads to 

LaTeX Math Block Reference
anchorCase2
.


...

For the finite-volume drain 

LaTeX Math Inline
body V_{\phi,1} \leq V_{\phi,0} < \infty
 the flowrate response factor 
LaTeX Math Inline
body\delta qq^{\uparrow}_1 / \delta qq^{\downarrow}_0
is getting stabilised over time as:

LaTeX Math Block
anchorCase2_PSS
alignmentleft
\delta qq^{\uparrow}_1 / \delta qq^{\downarrow}_0 = - f_{01} = - \frac{V_{\phi, 1}}{ V_{\phi, 0}} = \rm const

...

LaTeX Math Block
anchor1
alignmentleft
\delta qq^{\uparrow}_1 = -\delta qq^{\downarrow}_0

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W0.

...

LaTeX Math Block
anchorfk1
alignmentleft
\delta qq^{\uparrow}_1 =-\sum_i f_{i1} \delta qq^{\downarrow}_i

with constant coefficients

LaTeX Math Inline
bodyf_{i1} \geq 0, \ {i=\{0..N_{\rm inj} \} }

...

  1. Start with true UTRs 
    LaTeX Math Inline
    body\displaystyle p_{u, ik}(t)
    with the same LTR asymptotic
    LaTeX Math Inline
    body\displaystyle p_{u, ik}(t) \rightarrow \frac{t}{RS}
    .
  2. Select injector W0 
    1. Select producer W1
      1. Perform two a convolution tests to account for the impact from {W2 .. WN} production and from {W-1 .. W-M} on to DTRCTR_11 01
        LaTeX Math Inline
        bodyp_{u, 11}(t)
         and CTR_01
        LaTeX Math Inline
        bodyp_{u, 01}(t)
        :Test #1 – DTR_11
        Calculate interfering DTR_11
        LaTeX Math Inline
        body\displaystyle p^*_{u,
        11
        01}(t) = p_{u,
        11
        01}(t) + \sum_{
        k
        i \neq
        1
        0 \in {\rm inj}} p_{u,
        k1
        i1}(t) \cdot q^{\downarrow}_
        k
        i(t)
      2. Perform two convolution tests to account for the impact from {W2 .. WN} production on to DTR_11 , meaning that injector W0 is shut-down and all producers are working with constant rates 
        LaTeX Math Inline
        body
        q^*_k, except producer W1 which is working with unit-rate Test #2 –
        p_{u, 11}(t)
         and CTR_01 Calculate interfering CTR_01: 
        LaTeX Math Inline
        body
        \displaystyle p^*
        p_{u, 01}(t)
        :
        • Test #1 – DTR_11
          • Calculate interfering DTR_11: 
            LaTeX Math Inline
            body\displaystyle p^*_{u, 11}(t) = = p_{u, 0111}(t) + \sum_{k \neq 1 \in {\rm prod}} p_{u, k1}(t) \cdot qq^{\uparrow}_k(t)
            , meaning that injector all injectors W0 is working with unit-rate  are shut-down and all producers are were working with constant their historical rates 
            LaTeX Math Inline
            bodyq^*{\uparrow}_k(t)
            , except producer W1 which is working with unit-rate
        Calculate injection share constant
        •  Test #2 – CTR_01
          • Calculate interfering CTR_01
            LaTeX Math Inline
            body\displaystyle
        f_{01} = \frac{\dot
          • p^*_{u, 01}(t)
        }{\dot p^*
          • = p_{
        11
          • u, 01}(t)
        }
          • + \
        Bigg|
          • sum_{
        t
          • i \
        rightarrow \infty} as LLS over equation:  LaTeX Math Inlinebody\displaystyle \dot p^*_{01
          • neq 0 \in {\rm inj}} p_{u, i1}(t)
        = f_{01}
          • \cdot
        \dot p^*_{11}
          • q^{\downarrow}_i(t)
    2. Repeat the same for other producers (starting from point 2a onwards)
  3. Repeat the same for other injectors (starting from point 2 onwards)
          • , meaning that all producers are shut-down and all injectors are working with their historical rates 
            LaTeX Math Inline
            bodyq^{\downarrow}_i(t)
            , except injector W0 which is working with unit-rate
      1. Calculate injection share constant
        LaTeX Math Inline
        body\displaystyle f_{01} = \frac{\dot p^*_{01}(t)}{\dot p^*_{11}(t)} \Bigg|_{t \rightarrow \infty}
         as LLS over equation: 
        LaTeX Math Inline
        body\displaystyle \dot p^*_{01}(t) = f_{01} \cdot \dot p^*_{11}(t)
    1. Repeat the same for other producers (starting from point 2a onwards)
  4. Repeat the same for other injectors (starting from point 2 onwards)
Show If
userama@naftacollege.com


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Consider a pressure convolution equation for the well W1 with constant BHP in a multi-well system :

LaTeX Math Block
anchor1
alignmentleft
p_1(t) = p_i - \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) - \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

LaTeX Math Block
anchor1
alignmentleft
\dot p_1(t) = - \left( \sum_{k \in {\rm prod}} \int_0^t p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) \right)^\cdot - 
\left( \sum_{i \in {\rm inj}} \int_0^t p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) \right)^\cdot = 0


LaTeX Math Block
anchor1
alignmentleft
\sum_{k \in {\rm prod}} p_{u,\rm k1}(0) \dot q^{\uparrow}_k(t) + 
\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm kk}(t-\tau) dq^{\uparrow}_k(\tau) = 
- \sum_{i \in {\rm inj}} p_{u,\rm i1}(0) \dot q^{\downarrow}_i(t) 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

The zero-time value of DTR / CTR is zero by definition 

LaTeX Math Inline
bodyp_{u,\rm kj}(0) = 0, \ \forall k,j \in \mathbb{Z}
which leads to:

LaTeX Math Block
anchor1
alignmentleft
\sum_{k \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \sum_{i \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 

Let's separate producer W1 and injector W0 terms: 

LaTeX Math Block
anchorpre_eq
alignmentleft
 \int_0^t \dot p_{u,\rm 11}(t-\tau) dq^{\uparrow}_1(\tau) + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \int_0^t \dot p_{u,\rm 01}(t-\tau) dq^{\downarrow}_0(\tau)  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 


Consider a step-change in injector's W0 flowrate 

LaTeX Math Inline
body \delta q^{\downarrow}_0
 at zero time 
LaTeX Math Inline
body\tau = 0
, which can be written as 
LaTeX Math Inline
bodydq^{\uparrow}_1(\tau) = \delta q^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
, leading to a step-change in production rate in producer  W1
LaTeX Math Inline
bodydq^{\uparrow}_1(\tau) = \delta q^{\uparrow}_1 \cdot \delta(\tau) \, d\tau
.

Substituting this to 

LaTeX Math Block Reference
anchorpre_eq
 leads to:

LaTeX Math Block
anchor1
alignmentleft
\dot p_{u,\rm 11}(t) \delta q^{\uparrow}_1 + \sum_{k \neq 1 \in {\rm prod}} \int_0^t \dot p_{u,\rm k1}(t-\tau) dq^{\uparrow}_k(\tau) = 
-  \dot p_{u,\rm 01}(t) \delta q^{\downarrow}_0  - \sum_{i \neq 0 \in {\rm inj}} \int_0^t \dot p_{u,\rm i1}(t-\tau) dq^{\downarrow}_i(\tau) 






Again it is important to note a difference between

...